+0  
 
+1
308
3
avatar+402 

If x,y , and z are positive real numbers satisfying:

\(\begin{align*} \log x - \log y &= a \\ \log y - \log z &= 15, \text{ and} \\ \log z - \log x &= -7, \\ \end{align*}\)

where a is a real number, what is a?

RektTheNoob  Dec 16, 2017
 #1
avatar+7336 
+2

log x - log y   =   a        so        x/y  =  10^a

log y - log z   =   15      so        y/z  =  10^15

log z - log x   =   -7       so        z/x  =  10^-7        so        z  =  x * 10^-7

 

y/(x * 10^-7)  =  10^15

 

y/x * 10^7  =  10^15

 

y/x   =   10^8

 

x/y   =   10^-8

 

10^-8  =  10^a

 

a  =  -8

hectictar  Dec 16, 2017
 #2
avatar+91027 
+3

log x   - log y  = a

log y  - log z  =  15

log z   - log x   =   -7

 

Add  the first two equations and we get that

 

log x  - log z   =  a  + 15

 

Multiplying the third equation by  -1 on both sides we have that

 

log x  -  log z  =  7

 

This implies that

 

a + 15  =  7         subtract 15 from both sides

 

a  = - 8

 

 

cool cool cool

CPhill  Dec 16, 2017
edited by CPhill  Dec 16, 2017
 #3
avatar+402 
+3

thank you guys!

RektTheNoob  Dec 18, 2017

37 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.