+0  
 
0
76
3
avatar+241 

If x,y , and z are positive real numbers satisfying:

\(\begin{align*} \log x - \log y &= a \\ \log y - \log z &= 15, \text{ and} \\ \log z - \log x &= -7, \\ \end{align*}\)

where a is a real number, what is a?

RektTheNoob  Dec 16, 2017
Sort: 

3+0 Answers

 #1
avatar+5922 
+2

log x - log y   =   a        so        x/y  =  10^a

log y - log z   =   15      so        y/z  =  10^15

log z - log x   =   -7       so        z/x  =  10^-7        so        z  =  x * 10^-7

 

y/(x * 10^-7)  =  10^15

 

y/x * 10^7  =  10^15

 

y/x   =   10^8

 

x/y   =   10^-8

 

10^-8  =  10^a

 

a  =  -8

hectictar  Dec 16, 2017
 #2
avatar+80969 
+3

log x   - log y  = a

log y  - log z  =  15

log z   - log x   =   -7

 

Add  the first two equations and we get that

 

log x  - log z   =  a  + 15

 

Multiplying the third equation by  -1 on both sides we have that

 

log x  -  log z  =  7

 

This implies that

 

a + 15  =  7         subtract 15 from both sides

 

a  = - 8

 

 

cool cool cool

CPhill  Dec 16, 2017
edited by CPhill  Dec 16, 2017
 #3
avatar+241 
+2

thank you guys!

RektTheNoob  Dec 18, 2017

26 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details