+0  
 
+1
177
3
avatar+376 

If x,y , and z are positive real numbers satisfying:

\(\begin{align*} \log x - \log y &= a \\ \log y - \log z &= 15, \text{ and} \\ \log z - \log x &= -7, \\ \end{align*}\)

where a is a real number, what is a?

RektTheNoob  Dec 16, 2017
Sort: 

3+0 Answers

 #1
avatar+7056 
+2

log x - log y   =   a        so        x/y  =  10^a

log y - log z   =   15      so        y/z  =  10^15

log z - log x   =   -7       so        z/x  =  10^-7        so        z  =  x * 10^-7

 

y/(x * 10^-7)  =  10^15

 

y/x * 10^7  =  10^15

 

y/x   =   10^8

 

x/y   =   10^-8

 

10^-8  =  10^a

 

a  =  -8

hectictar  Dec 16, 2017
 #2
avatar+86649 
+3

log x   - log y  = a

log y  - log z  =  15

log z   - log x   =   -7

 

Add  the first two equations and we get that

 

log x  - log z   =  a  + 15

 

Multiplying the third equation by  -1 on both sides we have that

 

log x  -  log z  =  7

 

This implies that

 

a + 15  =  7         subtract 15 from both sides

 

a  = - 8

 

 

cool cool cool

CPhill  Dec 16, 2017
edited by CPhill  Dec 16, 2017
 #3
avatar+376 
+3

thank you guys!

RektTheNoob  Dec 18, 2017

11 Online Users

New Privacy Policy (May 2018)

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see cookie policy and privacy policy.