+0

# If $y>0$, find the range of all possible values of $y$ such that

0
316
6

If y>0, find the range of all possible values of y such that $$\lceil{y}\rceil\cdot\lfloor{y}\rfloor=42$$. Express your answer using interval notation.

Dec 1, 2018

### 6+0 Answers

#1
+23562
0

Never mind......

see below

Dec 1, 2018
edited by ElectricPavlov  Dec 1, 2018
edited by ElectricPavlov  Dec 1, 2018
edited by ElectricPavlov  Dec 1, 2018
#2
+111321
+1

Notice that if y > 0

6 < y < 7...... will make this true

For example....if y = 6.1

The ceiling = 7

And the floor = 6

Dec 1, 2018
#3
+23562
0

So ...in interval notation

(6,7)

What  about the negative options?   Oh yah....   y>0    Haha

ElectricPavlov  Dec 1, 2018
edited by ElectricPavlov  Dec 1, 2018
edited by ElectricPavlov  Dec 1, 2018
#5
+111321
0

Remember that y > 0

CPhill  Dec 1, 2018
#6
+111321
0

LOL!!!

Actually......your first answer was more "complete" if we allow y to be positive or negative....!!!

CPhill  Dec 1, 2018
edited by CPhill  Dec 1, 2018
#4
0

6 < y < 7   and     -7 < y < -6    according to W/A.

Dec 1, 2018
edited by Guest  Dec 1, 2018