+0  
 
0
471
3
avatar

(a) Let \( f : (-\infty,0) \cup (0,\infty) \to \mathbb{R}\) be defined by \(f(x) = x - \frac{1}{x}.\)
Show that \(f \) has no inverse function.

(b) Let  \( g : (0,\infty) \to \mathbb{R}\) be defined by \(g(x) = x - \frac{1}{x}.\)
Show that \(g\) has an inverse function.

 

i understand how to do a but im kinda having trubble with fuguring out b

 

thanks for any help

 Mar 27, 2021
edited by Guest  Mar 27, 2021
 #1
avatar
-1

This is so easy!  Just graph the function, and use the Horizontal Line Test.

 Mar 27, 2021
 #2
avatar
+2

That just proves it's not a quadratic? How does it prove anything else

Guest Mar 27, 2021
 #3
avatar+336 
+1

You need to tell them how you got the answer and what it is :P

wolfiechan  Mar 28, 2021

1 Online Users