We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
696
4
avatar

z+iz= 3+7i How do you get z?

 Dec 14, 2015

Best Answer 

 #1
avatar
+10

\(\displaystyle z(1+i) = 3 + 7i\) ,

so

\(\displaystyle z = \frac{3+7i}{1+i}\) .

Multiply top and bottom by the conjugate of the denominator.

 Dec 14, 2015
 #1
avatar
+10
Best Answer

\(\displaystyle z(1+i) = 3 + 7i\) ,

so

\(\displaystyle z = \frac{3+7i}{1+i}\) .

Multiply top and bottom by the conjugate of the denominator.

Guest Dec 14, 2015
 #2
avatar
0

z=5+2i

 Dec 14, 2015
 #4
avatar+23301 
+10

z+iz= 3+7i How do you get z?

 

\(\begin{array}{lrcl} & z+iz &=& 3+7i \\ & z(1+i) &=& 3+7i \\\\ \text{We set } & z = a+bi \\ & (a+bi)\cdot (1+i) &=& 3+7i \\ & a + ai+bi+bi^2 &=& 3+7i \qquad i^2 = -1\\ & a + ai+bi -b &=& 3+7i \\ & (a -b)+ (a+b) i &=& 3+7i \\\\ \text{We compare } &(1)\quad (a -b) &=& 3 \\ &(2)\quad (a+b) &=& 7 \\\\ & (a-b)+(a+b) &=& 3+7 \\ & a-b+a+b &=& 10 \\ & 2a &=& 10 \\ & \mathbf{a} & \mathbf{=} & \mathbf{5} \\\\ & (a+b)-(a-b) &=& 7-3 \\ & a+b-a+b &=& 4 \\ & 2b &=& 4 \\ & \mathbf{b} & \mathbf{=} & \mathbf{2} \\\\ & \mathbf{ z = a+bi }&\mathbf{=}& \mathbf{5+2i} \end{array}\)

 

laugh

 Dec 14, 2015

8 Online Users