+0  
 
0
429
4
avatar

z+iz= 3+7i How do you get z?

Guest Dec 14, 2015

Best Answer 

 #1
avatar
+10

\(\displaystyle z(1+i) = 3 + 7i\) ,

so

\(\displaystyle z = \frac{3+7i}{1+i}\) .

Multiply top and bottom by the conjugate of the denominator.

Guest Dec 14, 2015
 #1
avatar
+10
Best Answer

\(\displaystyle z(1+i) = 3 + 7i\) ,

so

\(\displaystyle z = \frac{3+7i}{1+i}\) .

Multiply top and bottom by the conjugate of the denominator.

Guest Dec 14, 2015
 #2
avatar
0

z=5+2i

Guest Dec 14, 2015
 #4
avatar+19480 
+10

z+iz= 3+7i How do you get z?

 

\(\begin{array}{lrcl} & z+iz &=& 3+7i \\ & z(1+i) &=& 3+7i \\\\ \text{We set } & z = a+bi \\ & (a+bi)\cdot (1+i) &=& 3+7i \\ & a + ai+bi+bi^2 &=& 3+7i \qquad i^2 = -1\\ & a + ai+bi -b &=& 3+7i \\ & (a -b)+ (a+b) i &=& 3+7i \\\\ \text{We compare } &(1)\quad (a -b) &=& 3 \\ &(2)\quad (a+b) &=& 7 \\\\ & (a-b)+(a+b) &=& 3+7 \\ & a-b+a+b &=& 10 \\ & 2a &=& 10 \\ & \mathbf{a} & \mathbf{=} & \mathbf{5} \\\\ & (a+b)-(a-b) &=& 7-3 \\ & a+b-a+b &=& 4 \\ & 2b &=& 4 \\ & \mathbf{b} & \mathbf{=} & \mathbf{2} \\\\ & \mathbf{ z = a+bi }&\mathbf{=}& \mathbf{5+2i} \end{array}\)

 

laugh

heureka  Dec 14, 2015

12 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.