z+iz= 3+7i How do you get z?
z(1+i)=3+7i ,
so
z=3+7i1+i .
Multiply top and bottom by the conjugate of the denominator.
z=5+2i
z+iz=3+7iz(1+i)=3+7iWe set z=a+bi(a+bi)⋅(1+i)=3+7ia+ai+bi+bi2=3+7ii2=−1a+ai+bi−b=3+7i(a−b)+(a+b)i=3+7iWe compare (1)(a−b)=3(2)(a+b)=7(a−b)+(a+b)=3+7a−b+a+b=102a=10a=5(a+b)−(a−b)=7−3a+b−a+b=42b=4b=2z=a+bi=5+2i