We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
151
5
avatar+322 

Regard y as the independent variable and x as the dependent variable and use implicit differentiation to find dx/dy. 

                  (I attempted this problem multiple times and still can't find what I'm doing wrong)

 

\(x^5y^2-x^3y+5xy^3=0\)

 Mar 7, 2019
 #2
avatar+22898 
+2

Regard y as the independent variable and x as the dependent variable and use implicit differentiation to find dx/dy. 

x^5y^2-x^3y+5xy^3=0

 

\(\begin{array}{|l|rcll|} \hline & \mathbf{x^5y^2-x^3y+5xy^3} & \mathbf{=}& \mathbf{0} \\\\ \hline y'=\ ? & (5x^{5-1}\cdot y^2+ x^5\cdot 2y^{2-1}\cdot y') \\ & - (3x^{3-1}\cdot y+ x^3\cdot y') \\ & + 5(1\cdot x^{1-1}\cdot y^3 +x\cdot 3y^{3-1}\cdot y' ) &=& 0 \\ \hline & (5x^4y^2+ x^5\cdot 2yy') - (3x^2y+ x^3y') + 5(y^3 +x\cdot 3y^2y' ) &=& 0 \\ & 5x^4y^2+ 2x^5yy'- 3x^2y - x^3y' + 5y^3 +15xy^2y' &=& 0 \\ & 2x^5yy'- x^3y'+15xy^2y'&=& 3x^2y-5y^3-5x^4y^2 \\ & y'x(2x^4y-x^2+15y^2)&=& y(3x^2-5y^2-5x^4y) \\ & \mathbf{y'} &\mathbf{=}& \mathbf{\dfrac{y(3x^2-5y^2-5x^4y)}{x(2x^4y-x^2+15y^2)}} \\ \hline \end{array}\)

 

laugh

 Mar 7, 2019
 #3
avatar+102793 
+2

Thanks Heureka :)

Melody  Mar 7, 2019
 #4
avatar+7709 
+1

\(x^5y^2 - x^3 y + 5xy^3 = 0\\ 5x^4 y^2 \dfrac{dx}{dy} + 2x^5y-3x^2y\dfrac{dx}{dy} -x^3 +5y^3 \dfrac{dx}{dy} + 15xy^2 = 0\\ (5x^4y^2 -3x^2y+5y^3)\cdot\dfrac{dx}{dy} = x^3-2x^5y-15xy^2 \\ \dfrac{dx}{dy} = \dfrac{x(x^2 - 2x^4y-15y^2)}{y(5x^4y-3x^2+5y^2)}\)

.
 Mar 9, 2019
 #5
avatar+22898 
+1

Regard y as the independent variable and x as the dependent variable and use implicit differentiation to find dx/dy. 

x^5y^2-x^3y+5xy^3=0

 

 

laugh

heureka  Mar 11, 2019

2 Online Users

avatar