+0  
 
0
79
2
avatar+1117 

In square ABCD, E is the midpoint of line BC, and F is the midpoint of line CD. Let G be the intersection of line AE and line BF. Prove that DG = AB.

 


Thanks so much!

AnonymousConfusedGuy  Mar 25, 2018
 #1
avatar+86859 
+2

Since we can use any scale factor for the square that we desire, we can derive an algebraic solution

 

Let  A  = (0, 0)

B  =  (0, a)

C  =   (a, a)

D  = (a, 0)

E  =  (a/2, a)

F  = (a, a/2)

AB  = a

 

The slope  of AE  is  (a)  / ( a/2 - 0 )  =  a / (a/2)  =  2

The slope of BF  is  ( a - a/2)   / ( 0 - a)  =  -(1/2)a  / a  =  -1/2 

 

The equation  of  the line containing segment   AE  is    y  = 2x

The equation  of the line containing segment FB  y = (-1/2)x  + a

 

Set these equal  to find the x coordinate of G

 

2x  = (-1/2)x + a

(5/2)x  = a

x  = (2/5)a

And the y coordinate  is y  = 2[(2/5)a]  =  4/5a

 

So....G  =  (2/5 a, 4/5 a)

 

And DG  =  √ [ (2/5 a - a)^2  + (4/5 a)^2 ]  = √ [ ( 3/5 a)^2  + (4/5  a)^2 ] =

 

a√[ 3^2  + 4^2  ] / 5  =   a √25 / 5  = (5 / 5 )  a  = a   =  AB

 

 

cool cool cool

CPhill  Mar 25, 2018
 #2
avatar+1117 
+2

Thank you so much!

AnonymousConfusedGuy  Mar 25, 2018

8 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.