+0

# In square $ABCD$, $E$ is the midpoint of $\overline{BC}$, and $F$ is the midpoint of $\overline{CD}$. Let $G$ be the intersection of \$\overl

+1
84
4
+95

In square ABCD, E is the midpoint of line BC, and F is the midpoint of line CD. Let G be the intersection of line AE and line BF. Prove that DG = AB.

Thanks!

MIRB14  Jan 20, 2018
Sort:

#1
+82546
+3

Probably a way easier way to do this with Geometry...but....I didn't see it...so.....

By SAS,   triangles BCF  and ABE  are congruent

Therefore angle EAB  = angle FBC

And angle DAE   = angle BEA

But angle DAE + angle EAB  = 90

But angle FBC +  angle FBA  = 90

So  angle BEA =  angle FBA

So...by  AA congruence....triangles BEG   and ABG are similar

But angle BGA  = angle EGB...so....each must = 90

So triangles BEG an ABG are right triangles

And AB  = 2BE

So  AG  = 2 BG

So AB^2  =  AG^2  + BG^2

AB^2  =  (2BG)^2  + BG^2

AB^2  =  5BG^2

So AB   = sqrt(5)BG    =  BC

And  (1/2)AB   =  [sqrt(5)/2] BG

cos angle ABG  = BG/ AB  =  BG / sqrt(5)BG   =  1/ sqrt(5)

sin angle ABG =2BG/sqrt (5)BG  =  2/sqrt(5)

And angle ABG  = angle CFB

So sin angle ABG  = sin angle CFB

But  angle CFB  and angle GFD are supplementary so their sines are equal

So....sin ABG  = sin GFD

And GFD is obtuse...so

So... cos GFD  =  -sqrt [  1  - sin^2(ABG) ]  =  -sqrt [ 1 -  sin^2(GFD) ]  =

- sqrt [ 1 - (2/sqrt(5))^2 ]  = -sqrt [ 1 - 4/5]    = -sqrt (1 /5)  =  -1/sqrt (5)

And

Triangles ABE  and BCF  are congruent by SAS

EA  = FB     BC  = AB     and BE  = CF =  (1/2)AB  = FD

EA^2  =  BC^2 + BE^2    .... so.....

FB^2  =  AB^2  +  (AB/2)^2

FB^2  =  5BG^2 + AB^2/4

FB^2  =  5BG^2 +  (5/4)BG^2

FB   =   BGsqrt  (5 + 5/4)

FB =  BGsqrt [ 25/4]  =  (5/2)BG

And

FG  =  FB - BG  =     (5/2)BG - BG  =  (3/2)BG

So  using the Law of Cosines

GD^2  =  FG^2  + FD^2 - 2(FG)(FD)cosGFD

GD^2  =  FG^2  + (AB/2)^2 - 2(FG)(AB/2)cosGFD

GD^2  = (9/4)BG^2 +   (5/4)BG^2 - 2 (3/2)BG * ( sqrt(5)BG/2) * [ - (1/sqrt(5) ) ]

GD^2  =  (14/4)BG^2 + (3/2)BG^2

GD^2  =  (7/2)BG^2 +  (3/2) BG^2

GD^2  =  (10/2)BG^2

GD^2 =  5BG^2

GD  =  sqrt(5)BG

DG  =  sqrt(5)BG  =  AB

CPhill  Jan 21, 2018
edited by CPhill  Jan 21, 2018
#2
+26470
+4

"In square ABCD, E is the midpoint of line BC, and F is the midpoint of line CD. Let G be the intersection of line AE and line BF. Prove that DG = AB."

Here's a coordinate geometry approach:

Alan  Jan 21, 2018
#3
+82546
0

Thanks, alan...I like your method better.....!!!

CPhill  Jan 21, 2018
#4
+95
+1

Thanks!

MIRB14  Jan 23, 2018

### 18 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details