The coordinates of the triangle are: (3, 0) (1, 3) and (6, 6).
To find the dimensions of this triangle, use the distance formula:
d = √((x2 - x1)2 + (y2 - y1)2)
Let's name the vertices for ease. A = (3, 0), B = (1, 3), and C = (6, 6)
AB = √((1 - 3)2 + (3 - 0)2)
= √((-2)2 + 32)
= √13
BC = √((6 - 1)2 + (6 - 3)2)
= √(52 + 32)
= √34
AC = √((6 - 3)2 + (6 - 0)2)
= √(32 + 62)
= 3√5
Now that we know the dimensions, we can use Heron's Formula for that.
s = semi perimeter = (√13 + √34 + 3√5) ÷ 2 ≈ 8.07
A = √s(s-a)(s-b)(s-c)
= √8.07(8.07 - √13)(8.07 - √34)(8.07 - 3√5)
= 10.5 units2, which is your answer :)
Base from 1,3 to 3,0 is sqrt 13
Height fro 3,1 to 6,6 is sqrt34
1/2 sqrt 34 * sqrt 13 = 1/2 (sqrt 442) = 10.51 units^2