+0  
 
+3
498
5
avatar+1442 

In the diagram below, we have DE = 2EC and AB = DC = 20. Find the length of FG.

 

Thanks!

 

 

 

 

 

EDIT: its 12 :)

AnonymousConfusedGuy  Feb 15, 2018
edited by AnonymousConfusedGuy  Feb 15, 2018
 #1
avatar+179 
+1

FG=10

DarkCalculis  Feb 15, 2018
 #2
avatar+1442 
+1

Sorry its not 10

AnonymousConfusedGuy  Feb 15, 2018
 #3
avatar+87571 
+1

Angle AFB  =  Angle DFE

Angle DBA  = Angle FDE

Therefore, by AA congruency  Triangle DEF  is similar to Triangle BAF

 

But  DE  is  2/3  of DC.... and since AB  = DC, then  DE  is also 2/3 of AB

 

Then all  parts of triangle DEF  are 2/3  of  their corrresponding parts in triangle BAF

 

Thus....the altitude of triangle  DEF  is 2/3  of the altitude of triangle BAF

 

But the altitude of triangle DEF  = CG since they are parallel

And for the same reason, the altitude of triangle BAF   = BG

 

Thus  CG   =  2/3  of BG.....so ...  there are 5 parts of BC......and BG  is 3 of these

 

So  BG  =  3/5   of BC

 

And triangle BGF  is similar to  triangle BCD

 

But  BG  =  3/5  of BC....so  GF  =  3/5 of CD

 

So    GF  = FG  =   (3/5)  20    =   12

 

 

cool cool cool

CPhill  Feb 15, 2018
edited by CPhill  Feb 15, 2018
 #4
avatar+19830 
+1

In the diagram below, we have DE = 2EC and AB = DC = 20. Find the length of FG.

 

 

\(\text{Let $DC = 20$ } \\ \text{Let $DE = \dfrac23\cdot 20$ } \\ \text{Let $EC = \dfrac13\cdot 20$ } \\ \text{Let $FG = x + EC $ or $x=FG-EC $ }\\ \text{Let $BG = p $ } \\ \text{Let $GC = q $ } \)

 

1. intercept theorem

\(\begin{array}{|rcll|} \hline \dfrac{q}{x} &=& \dfrac{p}{DE-x} \quad & \quad DE= \dfrac23\cdot 20 \\\\ \dfrac{q}{x} &=& \dfrac{p}{\dfrac23\cdot 20-x} \\\\ \mathbf{\dfrac{p}{q}} & \mathbf{=} & \mathbf{\dfrac{40-3x}{3x} \qquad (1)} \\ \hline \end{array} \)

 

2. intercept theorem

\(\begin{array}{|rcll|} \hline \dfrac{q}{DE-x} &=& \dfrac{p}{x+EC} \quad & \quad DE= \dfrac23\cdot 20 \qquad EC=\dfrac13\cdot 20 \\\\ \dfrac{q}{ \dfrac23\cdot 20-x} &=& \dfrac{p}{x+\dfrac13\cdot 20} \\\\ \mathbf{\dfrac{p}{q}} & \mathbf{=} & \mathbf{\dfrac{3x+20}{40-3x} \qquad (2)} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (1)=(2): & \mathbf{\dfrac{p}{q}} = \mathbf{\dfrac{40-3x}{3x} }&\mathbf{=}& \mathbf{\dfrac{3x+20}{40-3x}} \\\\ & \dfrac{40-3x}{3x} & = & \dfrac{3x+20}{40-3x} \\\\ & (40-3x)^2 & = & 3x(3x+20) \\\\ & 1600-240x+\not{9x^2} & = & \not{9x^2} +60x \\\\ & 1600-240x & = & 60x \\\\ & 300x &=& 1600 \quad & | \quad : 300 \\\\ & x &=& \dfrac{1600}{300} \\\\ & x &=& \dfrac{16}{3} \\\\ & FG &=& x + EC \qquad EC=\dfrac{20}{3} \\\\ & &=& \dfrac{16}{3} + \dfrac{20}{3} \\\\ & &=& \dfrac{36}{3} \\\\ & \mathbf{FG} &\mathbf{=} & \mathbf{12} \\ \hline \end{array}\)

 

 

laugh

heureka  Feb 16, 2018
 #5
avatar+1442 
+1

Thanks so much you guys! I love this site and its members, you are all so helpful!

AnonymousConfusedGuy  Feb 22, 2018

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.