In the diagram below, we have DE = 2EC and AB = DC = 20. Find the length of FG.
Thanks!
EDIT: its 12 :)
Angle AFB = Angle DFE
Angle DBA = Angle FDE
Therefore, by AA congruency Triangle DEF is similar to Triangle BAF
But DE is 2/3 of DC.... and since AB = DC, then DE is also 2/3 of AB
Then all parts of triangle DEF are 2/3 of their corrresponding parts in triangle BAF
Thus....the altitude of triangle DEF is 2/3 of the altitude of triangle BAF
But the altitude of triangle DEF = CG since they are parallel
And for the same reason, the altitude of triangle BAF = BG
Thus CG = 2/3 of BG.....so ... there are 5 parts of BC......and BG is 3 of these
So BG = 3/5 of BC
And triangle BGF is similar to triangle BCD
But BG = 3/5 of BC....so GF = 3/5 of CD
So GF = FG = (3/5) 20 = 12
In the diagram below, we have DE = 2EC and AB = DC = 20. Find the length of FG.
\(\text{Let $DC = 20$ } \\ \text{Let $DE = \dfrac23\cdot 20$ } \\ \text{Let $EC = \dfrac13\cdot 20$ } \\ \text{Let $FG = x + EC $ or $x=FG-EC $ }\\ \text{Let $BG = p $ } \\ \text{Let $GC = q $ } \)
1. intercept theorem
\(\begin{array}{|rcll|} \hline \dfrac{q}{x} &=& \dfrac{p}{DE-x} \quad & \quad DE= \dfrac23\cdot 20 \\\\ \dfrac{q}{x} &=& \dfrac{p}{\dfrac23\cdot 20-x} \\\\ \mathbf{\dfrac{p}{q}} & \mathbf{=} & \mathbf{\dfrac{40-3x}{3x} \qquad (1)} \\ \hline \end{array} \)
2. intercept theorem
\(\begin{array}{|rcll|} \hline \dfrac{q}{DE-x} &=& \dfrac{p}{x+EC} \quad & \quad DE= \dfrac23\cdot 20 \qquad EC=\dfrac13\cdot 20 \\\\ \dfrac{q}{ \dfrac23\cdot 20-x} &=& \dfrac{p}{x+\dfrac13\cdot 20} \\\\ \mathbf{\dfrac{p}{q}} & \mathbf{=} & \mathbf{\dfrac{3x+20}{40-3x} \qquad (2)} \\ \hline \end{array}\)
\(\begin{array}{|lrcll|} \hline (1)=(2): & \mathbf{\dfrac{p}{q}} = \mathbf{\dfrac{40-3x}{3x} }&\mathbf{=}& \mathbf{\dfrac{3x+20}{40-3x}} \\\\ & \dfrac{40-3x}{3x} & = & \dfrac{3x+20}{40-3x} \\\\ & (40-3x)^2 & = & 3x(3x+20) \\\\ & 1600-240x+\not{9x^2} & = & \not{9x^2} +60x \\\\ & 1600-240x & = & 60x \\\\ & 300x &=& 1600 \quad & | \quad : 300 \\\\ & x &=& \dfrac{1600}{300} \\\\ & x &=& \dfrac{16}{3} \\\\ & FG &=& x + EC \qquad EC=\dfrac{20}{3} \\\\ & &=& \dfrac{16}{3} + \dfrac{20}{3} \\\\ & &=& \dfrac{36}{3} \\\\ & \mathbf{FG} &\mathbf{=} & \mathbf{12} \\ \hline \end{array}\)
Thanks so much you guys! I love this site and its members, you are all so helpful!