Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+3
4335
5
avatar+1420 

In the diagram below, we have DE = 2EC and AB = DC = 20. Find the length of FG.

 

Thanks!

 

 

 

 

 

EDIT: its 12 :)

 Feb 15, 2018
edited by AnonymousConfusedGuy  Feb 15, 2018
 #1
avatar+484 
+1

FG=10

 Feb 15, 2018
 #2
avatar+1420 
+1

Sorry its not 10

AnonymousConfusedGuy  Feb 15, 2018
 #3
avatar+130474 
+1

Angle AFB  =  Angle DFE

Angle DBA  = Angle FDE

Therefore, by AA congruency  Triangle DEF  is similar to Triangle BAF

 

But  DE  is  2/3  of DC.... and since AB  = DC, then  DE  is also 2/3 of AB

 

Then all  parts of triangle DEF  are 2/3  of  their corrresponding parts in triangle BAF

 

Thus....the altitude of triangle  DEF  is 2/3  of the altitude of triangle BAF

 

But the altitude of triangle DEF  = CG since they are parallel

And for the same reason, the altitude of triangle BAF   = BG

 

Thus  CG   =  2/3  of BG.....so ...  there are 5 parts of BC......and BG  is 3 of these

 

So  BG  =  3/5   of BC

 

And triangle BGF  is similar to  triangle BCD

 

But  BG  =  3/5  of BC....so  GF  =  3/5 of CD

 

So    GF  = FG  =   (3/5)  20    =   12

 

 

cool cool cool

 Feb 15, 2018
edited by CPhill  Feb 15, 2018
 #4
avatar+26396 
+1

In the diagram below, we have DE = 2EC and AB = DC = 20. Find the length of FG.

 

 

Let DC=20 Let DE=2320 Let EC=1320 Let FG=x+EC or x=FGEC Let BG=p Let GC=q 

 

1. intercept theorem

qx=pDExDE=2320qx=p2320xpq=403x3x(1)

 

2. intercept theorem

qDEx=px+ECDE=2320EC=1320q2320x=px+1320pq=3x+20403x(2)

 

(1)=(2):pq=403x3x=3x+20403x403x3x=3x+20403x(403x)2=3x(3x+20)1600240x+9x2=9x2+60x1600240x=60x300x=1600|:300x=1600300x=163FG=x+ECEC=203=163+203=363FG=12

 

 

laugh

 Feb 16, 2018
 #5
avatar+1420 
+1

Thanks so much you guys! I love this site and its members, you are all so helpful!

 Feb 22, 2018

1 Online Users

avatar