+0  
 
0
512
1
avatar

In the diagram, square ABCD has sides of length 4, and triangle ABE is equilateral. Line segments BE and AC intersect at P. Point Q is on BC so that PQ is perpendicular to BC and PQ=x.


Determine the measure of angle BPC

 Feb 24, 2021
 #1
avatar+606 
+1

There is no diagram, so I am assuming $E\in ABCD$. 

We have $\angle PAE=60-\angle BAC=60-45=15$

And $\angle APE=180-60-15=180-75=105$.

By Vertical angles, $\angle APE=\angle BPC=\boxed{105^{\circ}}$.

 Feb 24, 2021

1 Online Users

avatar