+0  
 
0
355
2
avatar

In the figure; AC = BC and BC = 0.5AD

 

A) Calculate the angle A in the triangle BAD

 

B) Make the appropriate length for the AC in meter page (choose an appropriate size on page AC) and determine the area of the BAD triangle. Please provide different suggestions on how the area of the triangle BAD can be determined.
 

Guest Jun 9, 2017
 #1
avatar
0

(Page is suppost to be side)

Guest Jun 9, 2017
 #2
avatar+7339 
0

I got a strange answer for part A) , but I will post it anyway....

 

∠BAD  =  ∠BAC - ∠DAC

 

tan(∠BAC)  =  BC / AC            Since  AC = BC  , replace  " AC " with " BC ".

tan(∠BAC)  =  BC / BC

tan(∠BAC)  =  1

∠BAC  =  arctan(1)

∠BAC  =  45º

 

 

cos(∠DAC)  =  AC / AD

 

BC    =  0.5AD                         Multiply both sides of the equation by 2 .

2BC  =  AD                              Since  AC = BC  , replace  " BC " with " AC ".

2AC  =  AD

 

cos(∠DAC)  =  AC / AD            Replace  " AD "  with  " 2AC " .

cos(∠DAC)  =  AC / (2AC)        Reduce fraction by  AC

cos(∠DAC)  =  1/2

∠DAC  =  arccos(1/2)

∠DAC  =  60º

 

 

∠BAD  =  ∠BAC - ∠DAC

∠BAD  =  45º - 60º

∠BAD  =  -15º

 

......

Maybe it is supposed to be     BD = 0.5AC     or     DC = 0.5AC         ?

hectictar  Jun 10, 2017

18 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.