+0

# In the figure below, ABCD is a parallelogram, AD = 18 and DC = 27. Segments EG and FH are perpendicular to sides of

0
1031
3
+1280

In the figure below, ABCD is a parallelogram, AD = 18 and DC = 27. Segments EG and FH are perpendicular to sides of the parallelogram as shown, and EG = 16. Determine FH.

AWESOMEEE  May 14, 2015

#3
+1068
+13

sinA = 16/18

angle A = 62.73o

FH = 27*sin62.73o

FH = 24

Same answer, but I like yours better, geno!

civonamzuk  May 14, 2015
Sort:

#1
+17721
+13

The area of a parallelogram can be found by multiplying a side times the height to that side.

Since you will get the same answer using whatever side you want to use:

Area  =  FH x AD  =  EG x DC

--->        FH x 18  =  16 x 27

--->                FH  =  24

geno3141  May 14, 2015
#2
+85727
+5

Very nice, geno....!!!!

CPhill  May 14, 2015
#3
+1068
+13

sinA = 16/18

angle A = 62.73o

FH = 27*sin62.73o

FH = 24

Same answer, but I like yours better, geno!

civonamzuk  May 14, 2015

### 38 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details