+0  
 
0
1579
1
avatar+389 

In this multi-part problem, we will consider this system of simultaneous equations:  

                         3x+5y-6z=2, (i)    

                         5xy-10yz-6xz=-41, (ii)    

                         xyz=6. (iii)    

              Let a=3x, b=5y, and c=-6z.    

 

(a) Determine the monic cubic polynomial in terms of a variable t whose roots are t=a, t=b, and t=c.     Make sure to enter your answer in terms of t and only t, in expanded form.   

 

(b) Given that (x, y, z) is a solution to the original system of equations, determine all distinct possible values of x+y. 

 Aug 2, 2016
 #1
avatar
0

a) Substitue each term with a variable and put it in the system of equations.

\(\begin{array}{r@{~}c@{~}l l} a+b+c &=& 2, & (\textrm{i}') \\ \frac{ab}3+\frac{bc}3+\frac{ac}3 &=& -41, & (\textrm{ii}') \\ -\frac{abc}{90}&=&6. & (\textrm{iii}') \end{array} \)

After we get rid of the denominators we get

\(\begin{array}{r@{~}c@{~}l l} a+b+c &=& 2, & (\textrm{i}{'}{'}) \\ ab+bc+ac &=& -123, & (\textrm{ii}{'}{'}) \\ abc&=&-540. & (\textrm{iii}{'}{'}) \end{array}\)

Then use we simply use Vieta's formulas to get:

t^3 - 2t^2 - 123t + 540 = 0

 Aug 30, 2017

3 Online Users

avatar