+0  
 
0
127
2
avatar+1029 

In triangle ABC, AB = 10 and AC = 17. Let D be the foot of the perpendicular from A to BC. If BD:CD = 2:5, then find AD.

 

Thanks you guys!

Sort: 

2+0 Answers

 #1
avatar+86567 
+1

Let  BC  =  x

So BD   =  (2/7)x

And CD  =  (5/7)x

 

So

 

AD  =  √ (AB^2  - BD^2]   = √   ( 10^2  - [ (2/7)x]^2 )   and

AD  =  √  (AC^2  - CD^2 ) = √ ( 17^2 - [ (5/7)x ]^2 )

 

Since   AD   =  AD......we have that

 

√   ( 10^2  - [ (2/7)x]^2 )  =  √ ( 17^2 - [ (5/7)x ]^2 )     square  both sides

 

 ( 10^2  - [ (2/7)x]^2 )  =   ( 17^2 - [ (5/7)x ]^2 )     simplify

 

100 -  (4/49)x^2  =  289 - (25/49)x^2     rearrange

 

(25/49)x^2  - (4/49)x^2  =  289 - 100

 

(21/49)x^2  =  189   

 

(3/7)x^2 = 189    multiply both sides by  7/3

 

x^2  =  (7/3)189

 

x^2  =  63 * 7    

 

x^2  =  441    

 

So....AD  =

 

√  (100  -  (4/49)*441 )  =

 

√ ( 100 -  (4*9) )  =

 

√ (100 - 36)  =

 

√64   =

 

8

 

 

cool cool cool

CPhill  Mar 9, 2018
edited by CPhill  Mar 9, 2018
 #2
avatar+1029 
+1

Thank you so much!


20 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy