+0  
 
0
30
6
avatar

In triangle \(ABC\)\(AB\) is congruent to \(AC\), the measure of angle \(ABC\) is \(72^{\circ}\)and segment \(BD\) bisects angle \(ABC\) with point \(D\) on side \(AC\). If point \(E\) is on side \(BC\) such that segment \(DE\) is parallel to side \(AB\), and point \(F\) is on side \(AC\) such that segment \(EF\) is parallel to segment \(BD\), how many isosceles triangles are in the figure shown?
 

 Oct 17, 2020
edited by Guest  Oct 17, 2020
 #1
avatar
0

I count 10 isosceles triangles.

 
 Oct 17, 2020
 #3
avatar
0

Show me triangles 8, 9, and 10wink

 
Guest Oct 18, 2020
 #2
avatar
0

1/   ABC

2/   ABD

3/   BCD

4/   BDE

5/   CDE

6/   DEF

7/   CEF

smiley

 
 Oct 17, 2020
 #4
avatar
0

Thank you very much ^^! If possible, would you mind showing me your work? Only if you don't mind doing so though 

 
Guest Oct 18, 2020
 #5
avatar+1368 
+2

Look closely at a diagram and try to spot all the triangles that have 2 congruent angles. Have fun.laugh

 

 
Dragan  Oct 18, 2020
 #6
avatar
0

oh, thank you! :D

 
Guest Oct 20, 2020

38 Online Users

avatar