Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+5
2
1913
2
avatar+584 

In triangle ABC,AB=2,point D is on side BC, BD=2*DC,cosDAC=3×1010,cosC=2×55,AC+BC=?

(picture might not draw to scale)

 Jun 24, 2015

Best Answer 

 #1
avatar+26397 
+13

In triangle ABC,AB=2,point D is on side BC, BD=2*DC,cosDAC=3×1010,cosC=2×55,AC+BC=?

DAC=arccos(31010)=18.4349488229\ensurementC=arccos(255)=26.5650511771\ensurementDAC+C=45\ensurementADC=180\ensurement45\ensurement=135\ensurementBDA=180\ensurement135\ensurement=45\ensurement

 

Now we define:

DC = x,   BD = 2x,

H = foot (of a perpendicular) from A on line BC between B and D. (BDA=45\ensurement !!!)

h = AH

u = BH,  v = HD,  DB = u+v = 2x

 

H=foot (of a perpendicular) from  A to line ¯BC h=¯AHu=¯BHv=¯HDx=¯DC¯BC=3xtan(45\ensurement)=1=hvh=vtan(C)=0.5=hv+x0.5=vv+xv+x=2vv=x¯BD=u+v=2xu=2xvu=2xxu=xu2+h2=22|u=2xv(2xv)2+v2=2|v=x(2xx)2+x2=2x2+x2=22x2=2x2=1x=1¯BC=3x=31=3¯ACsin(135\ensurement)=xsin(DAC)¯ACsin(135\ensurement)=1sin(DAC)¯AC=sin(135\ensurement)sin(DAC)

 

¯AC=sin(135\ensurement)sin(18.4349488229\ensurement)¯AC=2.23606797750¯AC+¯BC=2.23606797750+3¯AC+¯BC=5.23606797750

 

 Jun 24, 2015
 #1
avatar+26397 
+13
Best Answer

In triangle ABC,AB=2,point D is on side BC, BD=2*DC,cosDAC=3×1010,cosC=2×55,AC+BC=?

DAC=arccos(31010)=18.4349488229\ensurementC=arccos(255)=26.5650511771\ensurementDAC+C=45\ensurementADC=180\ensurement45\ensurement=135\ensurementBDA=180\ensurement135\ensurement=45\ensurement

 

Now we define:

DC = x,   BD = 2x,

H = foot (of a perpendicular) from A on line BC between B and D. (BDA=45\ensurement !!!)

h = AH

u = BH,  v = HD,  DB = u+v = 2x

 

H=foot (of a perpendicular) from  A to line ¯BC h=¯AHu=¯BHv=¯HDx=¯DC¯BC=3xtan(45\ensurement)=1=hvh=vtan(C)=0.5=hv+x0.5=vv+xv+x=2vv=x¯BD=u+v=2xu=2xvu=2xxu=xu2+h2=22|u=2xv(2xv)2+v2=2|v=x(2xx)2+x2=2x2+x2=22x2=2x2=1x=1¯BC=3x=31=3¯ACsin(135\ensurement)=xsin(DAC)¯ACsin(135\ensurement)=1sin(DAC)¯AC=sin(135\ensurement)sin(DAC)

 

¯AC=sin(135\ensurement)sin(18.4349488229\ensurement)¯AC=2.23606797750¯AC+¯BC=2.23606797750+3¯AC+¯BC=5.23606797750

 

heureka Jun 24, 2015
 #2
avatar+584 
+5

Thank you,heureka!

I noticed that I could find the measure of angle ADC in this way.

angle ADC +angle DAC +angle ACD =180 degrees

angle ADC=180-(angle DAC+angle ACD)

cosADC=cos[180-(angle DAC+angle ACD)]

cosADC=cos360(π)×cos360(DAC+ACD)+sin360(π)×sin360(DAC+ACD)

sin360(π)=0

therefore,cosADC=cos360(π)×cos360(DAC+ACD)=(1×(cosDAC×cosACDsinDAC×sinACD))=sinDAC×sinACDcosDAC×cosACD

given that solvecosdac,cosacd(cosDAC=3×1010cosACD=2×55)

so solvesindac,sinacd(sinDAC=1010sinACD=55)

cosADC=sinDAC*sinACD-cosDAC*cosACD=1010×553×1010×2×55=5×5050=5010=22

angle ACD=arccos -sqrt(2)/2=135 (the measure of angle ACD is less than 180 degrees,ut more than 90 degrees)

AC=AC=sin360(135)[1010]=[22][1010]=22×10=5 

AC+BC=5+3

 Jun 25, 2015

2 Online Users