In triangle ABC,AB=√2,point D is on side BC, BD=2*DC,cosDAC=3×√1010,cosC=2×√55,AC+BC=?
(picture might not draw to scale)
In triangle ABC,AB=√2,point D is on side BC, BD=2*DC,cosDAC=3×√1010,cosC=2×√55,AC+BC=?
∠DAC=arccos(3⋅√1010)=18.4349488229\ensurement∘∠C=arccos(2⋅√55)=26.5650511771\ensurement∘∠DAC+∠C=45\ensurement∘∠ADC=180\ensurement∘−45\ensurement∘=135\ensurement∘∠BDA=180\ensurement∘−135\ensurement∘=45\ensurement∘
Now we define:
DC = x, BD = 2x,
H = foot (of a perpendicular) from A on line BC between B and D. (∠BDA=45\ensurement∘ !!!)
h = AH
u = BH, v = HD, DB = u+v = 2x
H=foot (of a perpendicular) from A to line ¯BC h=¯AHu=¯BHv=¯HDx=¯DC¯BC=3xtan(45\ensurement∘)=1=hvh=vtan(C)=0.5=hv+x0.5=vv+xv+x=2vv=x¯BD=u+v=2xu=2x−vu=2x−xu=xu2+h2=√22|u=2x−v(2x−v)2+v2=2|v=x(2x−x)2+x2=2x2+x2=22x2=2x2=1x=1¯BC=3x=3⋅1=3¯ACsin(135\ensurement∘)=xsin(DAC)¯ACsin(135\ensurement∘)=1sin(DAC)¯AC=sin(135\ensurement∘)sin(DAC)
¯AC=sin(135\ensurement∘)sin(18.4349488229\ensurement∘)¯AC=2.23606797750¯AC+¯BC=2.23606797750+3¯AC+¯BC=5.23606797750
In triangle ABC,AB=√2,point D is on side BC, BD=2*DC,cosDAC=3×√1010,cosC=2×√55,AC+BC=?
∠DAC=arccos(3⋅√1010)=18.4349488229\ensurement∘∠C=arccos(2⋅√55)=26.5650511771\ensurement∘∠DAC+∠C=45\ensurement∘∠ADC=180\ensurement∘−45\ensurement∘=135\ensurement∘∠BDA=180\ensurement∘−135\ensurement∘=45\ensurement∘
Now we define:
DC = x, BD = 2x,
H = foot (of a perpendicular) from A on line BC between B and D. (∠BDA=45\ensurement∘ !!!)
h = AH
u = BH, v = HD, DB = u+v = 2x
H=foot (of a perpendicular) from A to line ¯BC h=¯AHu=¯BHv=¯HDx=¯DC¯BC=3xtan(45\ensurement∘)=1=hvh=vtan(C)=0.5=hv+x0.5=vv+xv+x=2vv=x¯BD=u+v=2xu=2x−vu=2x−xu=xu2+h2=√22|u=2x−v(2x−v)2+v2=2|v=x(2x−x)2+x2=2x2+x2=22x2=2x2=1x=1¯BC=3x=3⋅1=3¯ACsin(135\ensurement∘)=xsin(DAC)¯ACsin(135\ensurement∘)=1sin(DAC)¯AC=sin(135\ensurement∘)sin(DAC)
¯AC=sin(135\ensurement∘)sin(18.4349488229\ensurement∘)¯AC=2.23606797750¯AC+¯BC=2.23606797750+3¯AC+¯BC=5.23606797750
Thank you,heureka!
I noticed that I could find the measure of angle ADC in this way.
angle ADC +angle DAC +angle ACD =180 degrees
angle ADC=180-(angle DAC+angle ACD)
cosADC=cos[180-(angle DAC+angle ACD)]
cosADC=cos360∘(π)×cos360∘(DAC+ACD)+sin360∘(π)×sin360∘(DAC+ACD)
sin360∘(π)=0
therefore,cosADC=cos360∘(π)×cos360∘(DAC+ACD)=−(1×(cosDAC×cosACD−sinDAC×sinACD))=sinDAC×sinACD−cosDAC×cosACD
given that solve→cosdac,cosacd(cosDAC=3×√1010cosACD=2×√55)
so solve→sindac,sinacd(sinDAC=√1010sinACD=√55)
cosADC=sinDAC*sinACD-cosDAC*cosACD=√1010×√55−3×√1010×2×√55=−5×√5050=−√5010=−√22
angle ACD=arccos -sqrt(2)/2=135 (the measure of angle ACD is less than 180 degrees,ut more than 90 degrees)
AC=AC=sin360∘(135∘)[√1010]=[√22][√1010]=√22×√10=√5
AC+BC=√5+3