+0  
 
+5
587
2
avatar+519 

In triangle ABC,$${\mathtt{AB}} = {\sqrt{{\mathtt{2}}}}$$,point D is on side BC, BD=2*DC,cosDAC=$${\frac{{\mathtt{3}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{10}}}}}{{\mathtt{10}}}}$$,cosC=$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}}{{\mathtt{5}}}}$$,AC+BC=?

(picture might not draw to scale)

fiora  Jun 24, 2015

Best Answer 

 #1
avatar+19207 
+13

In triangle ABC,$${\mathtt{AB}} = {\sqrt{{\mathtt{2}}}}$$,point D is on side BC, BD=2*DC,cosDAC=$${\frac{{\mathtt{3}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{10}}}}}{{\mathtt{10}}}}$$,cosC=$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}}{{\mathtt{5}}}}$$,AC+BC=?

$$\small{
\begin{array}{l}
\angle DAC = \arccos(\frac{3\cdot\sqrt{10}}{10}) = 18.4349488229\ensurement{^{\circ}}\\\\
\angle C = \arccos(\frac{2\cdot\sqrt{5}}{5}) = 26.5650511771\ensurement{^{\circ}}\\\\
\angle DAC + \angle C = 45 \ensurement{^{\circ}} \\\\
\angle ADC = 180 \ensurement{^{\circ}} -45 \ensurement{^{\circ}}
= 135\ensurement{^{\circ}}\\\\
\angle BDA = 180 \ensurement{^{\circ}} -135 \ensurement{^{\circ}}
= 45\ensurement{^{\circ}}\\\\
\end{array}
}$$

 

Now we define:

DC = x,   BD = 2x,

H = foot (of a perpendicular) from A on line BC between B and D. ($$\small{\angle BDA = 45\ensurement{^{\circ}}}$$ !!!)

h = AH

u = BH,  v = HD,  DB = u+v = 2x

 

$$\small{
\begin{array}{l}
H = \text{foot (of a perpendicular) from }~ A \text{ to line $\overline{BC}$ } \\
h = \overline{AH}\qquad
u = \overline{BH}\qquad
v = \overline{HD}\qquad
x = \overline{DC}\qquad
\overline{BC} = 3x
\end{array}
}\\\\
\small{
\begin{array}{rcl}
\tan{(45\ensurement{^{\circ}} )}=1 &=& \frac{h}{v} \\
h &=& v\\\\
\tan{(C)} = 0.5 &=& \frac{h}{v+x} \\
0.5 &=& \frac{v}{v+x} \\
v+x &=& 2v\\
v &=& x\\\\
\overline{BD} = u+v &=& 2x \\
u&=& 2x-v \\
u &=& 2x -x \\
u &=& x\\\\
u^2+h^2 &=& \sqrt{2}^2 \quad | \quad u= 2x-v\\
(2x-v)^2 + v^2 &=& 2 \quad | \quad v=x\\
(2x-x)^2 + x^2 &=& 2 \\
x^2+x^2 &=& 2\\
2x^2 &=& 2 \\
x^2 &=& 1\\
x &=& 1\\\\
\overline{BC} = 3x = 3\cdot 1 = 3\\\\
\frac {\overline{AC}}
{ \sin{(135\ensurement{^{\circ}})} }&=&\frac{x}{\sin{(DAC)}}\\\\
\frac {\overline{AC}} {\sin{(135\ensurement{^{\circ}} )}} &=&\frac{1}{ \sin{(DAC)} }\\\\
\overline{AC} &=& \frac {\sin{(135\ensurement{^{\circ}} )}} { \sin{(DAC)} } \\\\
\end{array}
}\\\\$$

 

$$\small{
\begin{array}{rcl}
\overline{AC} &=& \frac {\sin{(135\ensurement{^{\circ}} )}}
{ \sin{ ( 18.4349488229 \ensurement{^{\circ}} )} } \\\\
\overline{AC} &=& 2.23606797750 \\\\
\overline{AC}+\overline{BC}& =& 2.23606797750 +3\\\\
\mathbf{ \overline{AC}+\overline{BC}} &\mathbf{ =}& \mathbf{5.23606797750}
&\\
\hline
\end{array}
}$$

 

heureka  Jun 24, 2015
Sort: 

2+0 Answers

 #1
avatar+19207 
+13
Best Answer

In triangle ABC,$${\mathtt{AB}} = {\sqrt{{\mathtt{2}}}}$$,point D is on side BC, BD=2*DC,cosDAC=$${\frac{{\mathtt{3}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{10}}}}}{{\mathtt{10}}}}$$,cosC=$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}}{{\mathtt{5}}}}$$,AC+BC=?

$$\small{
\begin{array}{l}
\angle DAC = \arccos(\frac{3\cdot\sqrt{10}}{10}) = 18.4349488229\ensurement{^{\circ}}\\\\
\angle C = \arccos(\frac{2\cdot\sqrt{5}}{5}) = 26.5650511771\ensurement{^{\circ}}\\\\
\angle DAC + \angle C = 45 \ensurement{^{\circ}} \\\\
\angle ADC = 180 \ensurement{^{\circ}} -45 \ensurement{^{\circ}}
= 135\ensurement{^{\circ}}\\\\
\angle BDA = 180 \ensurement{^{\circ}} -135 \ensurement{^{\circ}}
= 45\ensurement{^{\circ}}\\\\
\end{array}
}$$

 

Now we define:

DC = x,   BD = 2x,

H = foot (of a perpendicular) from A on line BC between B and D. ($$\small{\angle BDA = 45\ensurement{^{\circ}}}$$ !!!)

h = AH

u = BH,  v = HD,  DB = u+v = 2x

 

$$\small{
\begin{array}{l}
H = \text{foot (of a perpendicular) from }~ A \text{ to line $\overline{BC}$ } \\
h = \overline{AH}\qquad
u = \overline{BH}\qquad
v = \overline{HD}\qquad
x = \overline{DC}\qquad
\overline{BC} = 3x
\end{array}
}\\\\
\small{
\begin{array}{rcl}
\tan{(45\ensurement{^{\circ}} )}=1 &=& \frac{h}{v} \\
h &=& v\\\\
\tan{(C)} = 0.5 &=& \frac{h}{v+x} \\
0.5 &=& \frac{v}{v+x} \\
v+x &=& 2v\\
v &=& x\\\\
\overline{BD} = u+v &=& 2x \\
u&=& 2x-v \\
u &=& 2x -x \\
u &=& x\\\\
u^2+h^2 &=& \sqrt{2}^2 \quad | \quad u= 2x-v\\
(2x-v)^2 + v^2 &=& 2 \quad | \quad v=x\\
(2x-x)^2 + x^2 &=& 2 \\
x^2+x^2 &=& 2\\
2x^2 &=& 2 \\
x^2 &=& 1\\
x &=& 1\\\\
\overline{BC} = 3x = 3\cdot 1 = 3\\\\
\frac {\overline{AC}}
{ \sin{(135\ensurement{^{\circ}})} }&=&\frac{x}{\sin{(DAC)}}\\\\
\frac {\overline{AC}} {\sin{(135\ensurement{^{\circ}} )}} &=&\frac{1}{ \sin{(DAC)} }\\\\
\overline{AC} &=& \frac {\sin{(135\ensurement{^{\circ}} )}} { \sin{(DAC)} } \\\\
\end{array}
}\\\\$$

 

$$\small{
\begin{array}{rcl}
\overline{AC} &=& \frac {\sin{(135\ensurement{^{\circ}} )}}
{ \sin{ ( 18.4349488229 \ensurement{^{\circ}} )} } \\\\
\overline{AC} &=& 2.23606797750 \\\\
\overline{AC}+\overline{BC}& =& 2.23606797750 +3\\\\
\mathbf{ \overline{AC}+\overline{BC}} &\mathbf{ =}& \mathbf{5.23606797750}
&\\
\hline
\end{array}
}$$

 

heureka  Jun 24, 2015
 #2
avatar+519 
+5

Thank you,heureka!

I noticed that I could find the measure of angle ADC in this way.

angle ADC +angle DAC +angle ACD =180 degrees

angle ADC=180-(angle DAC+angle ACD)

cosADC=cos[180-(angle DAC+angle ACD)]

cosADC=$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{\pi}}\right)}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{DAC}}{\mathtt{\,\small\textbf+\,}}{\mathtt{ACD}}\right)}{\mathtt{\,\small\textbf+\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{\pi}}\right)}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{DAC}}{\mathtt{\,\small\textbf+\,}}{\mathtt{ACD}}\right)}$$

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{\pi}}\right)} = {\mathtt{0}}$$

therefore,cosADC=$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{\pi}}\right)}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{DAC}}{\mathtt{\,\small\textbf+\,}}{\mathtt{ACD}}\right)}$$=$${\mathtt{\,-\,}}\left({\mathtt{1}}{\mathtt{\,\times\,}}\left({\mathtt{cosDAC}}{\mathtt{\,\times\,}}{\mathtt{cosACD}}{\mathtt{\,-\,}}{\mathtt{sinDAC}}{\mathtt{\,\times\,}}{\mathtt{sinACD}}\right)\right) = {\mathtt{sinDAC}}{\mathtt{\,\times\,}}{\mathtt{sinACD}}{\mathtt{\,-\,}}{\mathtt{cosDAC}}{\mathtt{\,\times\,}}{\mathtt{cosACD}}$$

given that $$\underset{\,\,\,\,{\textcolor[rgb]{0.66,0.66,0.66}{\rightarrow {\mathtt{cosdac, cosacd}}}}}{{solve}}{\left(\begin{array}{l}{\mathtt{cosDAC}}={\frac{{\mathtt{3}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{10}}}}}{{\mathtt{10}}}}\\
{\mathtt{cosACD}}={\frac{{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}}{{\mathtt{5}}}}\end{array}\right)}$$

so $$\underset{\,\,\,\,{\textcolor[rgb]{0.66,0.66,0.66}{\rightarrow {\mathtt{sindac, sinacd}}}}}{{solve}}{\left(\begin{array}{l}{\mathtt{sinDAC}}={\frac{{\sqrt{{\mathtt{10}}}}}{{\mathtt{10}}}}\\
{\mathtt{sinACD}}={\frac{{\sqrt{{\mathtt{5}}}}}{{\mathtt{5}}}}\end{array}\right)}$$

cosADC=sinDAC*sinACD-cosDAC*cosACD=$${\frac{{\frac{{\sqrt{{\mathtt{10}}}}}{{\mathtt{10}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}}{{\mathtt{5}}}}{\mathtt{\,-\,}}{\frac{{\frac{{\mathtt{3}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{10}}}}}{{\mathtt{10}}}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}}{{\mathtt{5}}}} = {\mathtt{\,-\,}}{\frac{{\mathtt{5}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{50}}}}}{{\mathtt{50}}}} = {\mathtt{\,-\,}}{\frac{{\sqrt{{\mathtt{50}}}}}{{\mathtt{10}}}} = {\mathtt{\,-\,}}{\frac{{\sqrt{{\mathtt{2}}}}}{{\mathtt{2}}}}$$

angle ACD=arccos -sqrt(2)/2=135 (the measure of angle ACD is less than 180 degrees,ut more than 90 degrees)

AC=$${\mathtt{AC}} = {\frac{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{135}}^\circ\right)}}{\left[{\frac{{\sqrt{{\mathtt{10}}}}}{{\mathtt{10}}}}\right]}} = {\frac{\left[{\frac{{\sqrt{{\mathtt{2}}}}}{{\mathtt{2}}}}\right]}{\left[{\frac{{\sqrt{{\mathtt{10}}}}}{{\mathtt{10}}}}\right]}} = {\frac{{\sqrt{{\mathtt{2}}}}}{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{10}}}} = {\sqrt{{\mathtt{5}}}}$$ 

AC+BC=$${\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}$$

fiora  Jun 25, 2015

11 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details