+0  
 
0
497
1
avatar+598 

In triangle $ABC$, we have that $E$ and $F$ are midpoints of sides $\overline{AC}$ and $\overline{AB}$, respectively. The area of $\triangle ABC$ is 24 square units. How many square units are in the area of $\triangle CEF$?

michaelcai  Nov 12, 2017
 #1
avatar+89787 
+1

Call AB  the height of  ΔABC and AC the base

 

Then  (1/2) AC * AB  =  24 units^2   ⇒  AC * AB  =  48 units^2

 

But   EC = (1/2)AC  is the base of   ΔCEF  and (1/2)AB =  AF  is the height

 

So  area of    Δ CEF  =  (1/2)CE *AF  =  (1/2) [(1/2)AC] * [(1/2)AB]   =  1/8 AC * AB  =

 

(1/8)* 48  =   6 units^2

 

 

cool cool cool

CPhill  Nov 12, 2017

40 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.