+0  
 
+3
239
1
avatar+598 

In triangle $PQR$, we have $\angle P = 90^\circ$, $QR = 20$, and $\tan R = 4\sin R$. What is $PR$?

michaelcai  Nov 14, 2017
 #1
avatar+86859 
+1

 

QR is the hypotenuse of this right triangle....and we have that.....

 

tan R  = 4 / sin R

sinR * tanR  = 4

sin^2R / cosR =  4

(1 - cos^2R) / cosR  = 4

1 - cos^2R = 4cosR

cos^2R + 4cosR - 1  = 0

 

Let x = cosR  ........ so....

 

x^2 + 4x - 1   = 0

 

Solving this for x  gives  

 

x = - √5 - 2       or   x  =   √5 - 2

 

However....since R  is acute......the second value will only be good for the cosine

 

So x =  cos R  =  √5 - 2

 

So

 

Cos R  =  PR / QR

 

√5 - 2  =  PR / 20

 

So     ....    PR   =  20 ( √5 - 2) 

 

 

cool cool cool  

CPhill  Nov 14, 2017

22 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.