+0  
 
0
32
1
avatar+0 

In triangle $ABC$, let $I$ be the incenter of triangle $ABC$. The line through $I$ parallel to $BC$ intersects $AB$ and $AC$ at $M$ and $N$, respectively. If $AB = 5$, $AC = 5$, and $BC = 8$, then find the area of triangle $AMN$.

 
 Feb 12, 2024
 #1
avatar+130081 
+1

 

I = (4,r)   where r is the radius of the incircle

To find r

[ ABC] = (1/2)(8 + 5 + 5) r

(1/2) 8 * 3 = (1/2) (18) r

r = 4/3

l = (4, 4/3)

 

ID = 4/3 

 

AI =  3 - (4/3)  = 5/3

 

Triangles  AMN  and ABC are similar such that  AI /  AD =   = (5/3) / 3  = 5/9

 

[AMN ] = (5/9)^2   [ ABC  ] =   (5/9)^2 (1/2) (8)(3)  = (25 / 81 ) * 12  = 300 / 81 =   100 / 27

 

 

cool cool cool

 Feb 12, 2024
edited by CPhill  Feb 12, 2024
edited by CPhill  Feb 12, 2024
edited by CPhill  Jan 8, 2025
edited by CPhill  Jan 8, 2025

1 Online Users