+0  
 
0
29
1
avatar+0 

In triangle $ABC$, let $I$ be the incenter of triangle $ABC$. The line through $I$ parallel to $BC$ intersects $AB$ and $AC$ at $M$ and $N$, respectively. If $AB = 5$, $AC = 5$, and $BC = 8$, then find the area of triangle $AMN$.

 Feb 12, 2024
 #1
avatar+129885 
+1

 

 

Triangle ABD  is 3-4-5  right   with AD = 3 height of ABC

cos(ABD)  = 4/5

sin (ABD)  =  3/5

 

sin (ABD / 2)  =   sin (IBD)  =   sqrt  [(1 -  4/5)  / 2 ] =  sqrt (1/10)

 

cos (IBD)    = sqrt [ 1 - 1/10 ]  = 3 /sqrt10

 

tan (IBD)    =  1/3  =  ID / 4

 

ID = 4/3 

 

AD =  3 - (4/3)  = 5/3

 

Triangles  AMN  and ABC are similar such that  AD / AI  = (5/3) / 3  = 5/9

 

[AMN ] = (5/9)^2   [ ABC  ] =   (5/9)^2 (1/2) (8)(3)  = (25 / 81 ) * 12  = 300 / 81 =   100 / 27

 

 

cool cool cool

 Feb 12, 2024
edited by CPhill  Feb 12, 2024
edited by CPhill  Feb 12, 2024

1 Online Users