+0  
 
0
377
2
avatar+227 

I get integrals and indefinite integrals. I do. I just don't get this one: 

$$\int\frac{e^{sqrt(x)}}{sqrt(x)}$$

By the way, I couldn't figure out how to get square roots using LaTeX, so sqrt is square root.

Any help, please???

ThisGuy  Feb 24, 2015

Best Answer 

 #1
avatar+26753 
+10

1. Use \sqrt{x} to get  $$\sqrt{x}$$

 

2. Use the substitution:

 $$u=\sqrt{x}$$

 

$$\\du=\frac{dx}{2\sqrt{x}}\\2\sqrt{x}du=dx\\2udu=dx$$

 

So:

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}}dx=\int \frac{e^{u} \times 2udu}{u}$$

 

or:

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}}dx=2\int e^{u}du = 2e^u=2e^{\sqrt{x}}$$

.

Alan  Feb 24, 2015
 #1
avatar+26753 
+10
Best Answer

1. Use \sqrt{x} to get  $$\sqrt{x}$$

 

2. Use the substitution:

 $$u=\sqrt{x}$$

 

$$\\du=\frac{dx}{2\sqrt{x}}\\2\sqrt{x}du=dx\\2udu=dx$$

 

So:

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}}dx=\int \frac{e^{u} \times 2udu}{u}$$

 

or:

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}}dx=2\int e^{u}du = 2e^u=2e^{\sqrt{x}}$$

.

Alan  Feb 24, 2015
 #2
avatar+227 
+5

Ugh, now this seems way too simple. Thank you a ton!

ThisGuy  Feb 24, 2015

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.