+0  
 
0
1298
2
avatar+227 

I get integrals and indefinite integrals. I do. I just don't get this one: 

$$\int\frac{e^{sqrt(x)}}{sqrt(x)}$$

By the way, I couldn't figure out how to get square roots using LaTeX, so sqrt is square root.

Any help, please???

 Feb 24, 2015

Best Answer 

 #1
avatar+33659 
+10

1. Use \sqrt{x} to get  $$\sqrt{x}$$

 

2. Use the substitution:

 $$u=\sqrt{x}$$

 

$$\\du=\frac{dx}{2\sqrt{x}}\\2\sqrt{x}du=dx\\2udu=dx$$

 

So:

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}}dx=\int \frac{e^{u} \times 2udu}{u}$$

 

or:

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}}dx=2\int e^{u}du = 2e^u=2e^{\sqrt{x}}$$

.

 Feb 24, 2015
 #1
avatar+33659 
+10
Best Answer

1. Use \sqrt{x} to get  $$\sqrt{x}$$

 

2. Use the substitution:

 $$u=\sqrt{x}$$

 

$$\\du=\frac{dx}{2\sqrt{x}}\\2\sqrt{x}du=dx\\2udu=dx$$

 

So:

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}}dx=\int \frac{e^{u} \times 2udu}{u}$$

 

or:

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}}dx=2\int e^{u}du = 2e^u=2e^{\sqrt{x}}$$

.

Alan Feb 24, 2015
 #2
avatar+227 
+5

Ugh, now this seems way too simple. Thank you a ton!

 Feb 24, 2015

1 Online Users