We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
238
3
avatar

I need some help simplifying 'e'.

 

Thanks for any help!

 Oct 4, 2018

Best Answer 

 #1
avatar+5225 
+2

\(\Large \dfrac{a^{2n-1}\times b^3 \times c^{1-n}}{a^{n-3}\times b^{2-n}\times c^{2-2n}} = \\ \\ \Large a^{(2n-1)-(n-3))}\times b^{3-(2-n)}\times c^{(1-n)-(2-2n)} = \\ \\ \Large a^{n+2}\times b^{n+1}\times c^{n-1}\)

.
 Oct 4, 2018
 #1
avatar+5225 
+2
Best Answer

\(\Large \dfrac{a^{2n-1}\times b^3 \times c^{1-n}}{a^{n-3}\times b^{2-n}\times c^{2-2n}} = \\ \\ \Large a^{(2n-1)-(n-3))}\times b^{3-(2-n)}\times c^{(1-n)-(2-2n)} = \\ \\ \Large a^{n+2}\times b^{n+1}\times c^{n-1}\)

Rom Oct 4, 2018
 #2
avatar+65 
-2

Ok. 'e' is Euler's Constant, or approximately 2.718281828459045235360...

Euler's constant can be defined by terms of an infinite sum in the form of \(e=\sum_{n=0}^{}{\frac{1}{n!}}\)

.
 Oct 4, 2018
 #3
avatar
0

no thats lord farquaad from shrek

Guest Oct 4, 2018

12 Online Users

avatar