#2**0 **

-5/2x > 30

-5/2x results in a problem at x=0:

so let's see the plot:

[input]plot( -5/(2x) , 30, x= -1..1, -10..40 )[/input]

as you can see, for all x>0 the result of -5/2x will be less than zero.

for x < 0:

-5/(2x)

x in the denominator, so try the reciprocal value: (switch > to <)

-5/2x > 30**| reciprocal **

(2x)/-5 < 1/30

(2x) < -5/30**|*(-5)**

x > -5/60**|/2**

x > -1/12

so the result is:**-1/12 < x < 0**

Quote:what is the answer to -5/2x>30?

-5/2x > 30

-5/2x results in a problem at x=0:

so let's see the plot:

[input]plot( -5/(2x) , 30, x= -1..1, -10..40 )[/input]

as you can see, for all x>0 the result of -5/2x will be less than zero.

for x < 0:

-5/(2x)

x in the denominator, so try the reciprocal value: (switch > to <)

-5/2x > 30

(2x)/-5 < 1/30

(2x) < -5/30

x > -5/60

x > -1/12

so the result is:

admin Jan 30, 2012