+0  
 
0
259
2
avatar

Solve the inequality (-2x - 12)/2 > 7(3 - 4x).

 Apr 14, 2022

Best Answer 

 #1
avatar+580 
+1

\(\frac{\left(-2x-12\right)}{2}>7\left(3-4x\right)\)

 

\(\mathrm{Multiply\:both\:sides\:by\:}2\)

 

\(\frac{-2x-12}{2}\cdot \:2>7\left(3-4x\right)\cdot \:2\)

 

\(-2x-12>14\left(3-4x\right)\)

 

\(-2x-12>42-56x\)

 

\(\mathrm{Add\:}12\mathrm{\:to\:both\:sides}\)

 

\(-2x-12+12>42-56x+12\)

 

\(Simplify\)

 

\(-2x>-56x+54\)

 

\(\mathrm{Add\:}56x\mathrm{\:to\:both\:sides}\)

 

\(-2x+56x>-56x+54+56x\)

 

\(Simplify \)

 

\(54x>54\)

 

\(\mathrm{Divide\:both\:sides\:by\:}54\)

 

\(\frac{54x}{54}>\frac{54}{54}\)

 

\(Simplify\)

 

\(x>1\)

 

-Vinculum

smileysmileysmiley

 Apr 14, 2022
 #1
avatar+580 
+1
Best Answer

\(\frac{\left(-2x-12\right)}{2}>7\left(3-4x\right)\)

 

\(\mathrm{Multiply\:both\:sides\:by\:}2\)

 

\(\frac{-2x-12}{2}\cdot \:2>7\left(3-4x\right)\cdot \:2\)

 

\(-2x-12>14\left(3-4x\right)\)

 

\(-2x-12>42-56x\)

 

\(\mathrm{Add\:}12\mathrm{\:to\:both\:sides}\)

 

\(-2x-12+12>42-56x+12\)

 

\(Simplify\)

 

\(-2x>-56x+54\)

 

\(\mathrm{Add\:}56x\mathrm{\:to\:both\:sides}\)

 

\(-2x+56x>-56x+54+56x\)

 

\(Simplify \)

 

\(54x>54\)

 

\(\mathrm{Divide\:both\:sides\:by\:}54\)

 

\(\frac{54x}{54}>\frac{54}{54}\)

 

\(Simplify\)

 

\(x>1\)

 

-Vinculum

smileysmileysmiley

Vinculum Apr 14, 2022
 #2
avatar+64 
-2

I believe that right

 Apr 14, 2022

2 Online Users