\(\frac{\left(-2x-12\right)}{2}>7\left(3-4x\right)\)
\(\mathrm{Multiply\:both\:sides\:by\:}2\)
\(\frac{-2x-12}{2}\cdot \:2>7\left(3-4x\right)\cdot \:2\)
\(-2x-12>14\left(3-4x\right)\)
\(-2x-12>42-56x\)
\(\mathrm{Add\:}12\mathrm{\:to\:both\:sides}\)
\(-2x-12+12>42-56x+12\)
\(Simplify\)
\(-2x>-56x+54\)
\(\mathrm{Add\:}56x\mathrm{\:to\:both\:sides}\)
\(-2x+56x>-56x+54+56x\)
\(Simplify \)
\(54x>54\)
\(\mathrm{Divide\:both\:sides\:by\:}54\)
\(\frac{54x}{54}>\frac{54}{54}\)
\(Simplify\)
\(x>1\)
-Vinculum
\(\frac{\left(-2x-12\right)}{2}>7\left(3-4x\right)\)
\(\mathrm{Multiply\:both\:sides\:by\:}2\)
\(\frac{-2x-12}{2}\cdot \:2>7\left(3-4x\right)\cdot \:2\)
\(-2x-12>14\left(3-4x\right)\)
\(-2x-12>42-56x\)
\(\mathrm{Add\:}12\mathrm{\:to\:both\:sides}\)
\(-2x-12+12>42-56x+12\)
\(Simplify\)
\(-2x>-56x+54\)
\(\mathrm{Add\:}56x\mathrm{\:to\:both\:sides}\)
\(-2x+56x>-56x+54+56x\)
\(Simplify \)
\(54x>54\)
\(\mathrm{Divide\:both\:sides\:by\:}54\)
\(\frac{54x}{54}>\frac{54}{54}\)
\(Simplify\)
\(x>1\)
-Vinculum