+0  
 
+5
733
5
avatar

Input        Output

  0                  3

  1                  5

  2                  7

Please help, I have been working on this problem for a while now. I can't seem to figure it out!

 Feb 22, 2016

Best Answer 

 #5
avatar+26387 
+25

Input        Output

  0                  3

  1                  5

  2                  7

Please help, I have been working on this problem for a while now. I can't seem to figure it out!

 

\(\begin{array}{|c|c|} \hline \text{Input} & \text{Input } + 1 = \text{ Index } \\ \hline 0 & 1 \\ \hline 1 & 2 \\ \hline 2 & 3 \\ \hline \end{array}\)

 

 Arithmetic sequence:

\(\begin{array}{rcl} a_n &=& a_1 + (n-1)\cdot d \qquad n = \text{input }+1 \qquad a_1 = 3 \qquad d= 2 \\ a_n &=& 3 + ( \text{input }+1 - 1 ) \cdot 2 \\ a_n &=& 3 + \text{input } \cdot 2 \\ \text{output } &=& 3 + \text{input } \cdot 2 \\ \end{array}\)

 

laugh

 Feb 23, 2016
 #1
avatar
+10

What's the question?!

y=2x + 3 (just in case that was what you were asking)

 Feb 22, 2016
 #2
avatar
0

Thanks! Sorry i wasn't specific on the question

 Feb 22, 2016
 #3
avatar+129849 
+5

Guest is correct....let's see how he/she arrived at that answer

 

Note :  the output [y]  changes by 2 every time the input [x] changes by 1

 

And the slope of a line = change in y  change in x =  2 / 1   = 2

 

So,  using  the form

 

y - y1  = 2 ( x - x1)       we can write an equation for this line

 

Let  (x1, y1)   =  any of the  ( Input, Output) values....I'll use the first one.... (0, 3)...so we have...

 

y - 3  = 2(x - 0)

 

y  - 3  = 2x          add 3 to both sides

 

y = 2x + 3

 

Just as "guest" said......

 

 

cool cool cool

 Feb 22, 2016
 #4
avatar+5265 
+5

Beautiful explanation.

rarinstraw1195  Feb 22, 2016
 #5
avatar+26387 
+25
Best Answer

Input        Output

  0                  3

  1                  5

  2                  7

Please help, I have been working on this problem for a while now. I can't seem to figure it out!

 

\(\begin{array}{|c|c|} \hline \text{Input} & \text{Input } + 1 = \text{ Index } \\ \hline 0 & 1 \\ \hline 1 & 2 \\ \hline 2 & 3 \\ \hline \end{array}\)

 

 Arithmetic sequence:

\(\begin{array}{rcl} a_n &=& a_1 + (n-1)\cdot d \qquad n = \text{input }+1 \qquad a_1 = 3 \qquad d= 2 \\ a_n &=& 3 + ( \text{input }+1 - 1 ) \cdot 2 \\ a_n &=& 3 + \text{input } \cdot 2 \\ \text{output } &=& 3 + \text{input } \cdot 2 \\ \end{array}\)

 

laugh

heureka Feb 23, 2016

3 Online Users

avatar
avatar