+0  
 
0
554
3
avatar+209 

f(x)= sqrt(4t)

Find the instantaneous velocity using f(t)- f(t0)/ t-t0

a.) t0 = 1
b.) t0= 4

Thank you!

 Feb 11, 2016

Best Answer 

 #1
avatar+94526 
+5

a.) t0 = 1

                                              

[f(t)- f(t0)] / [ t - t0 ] =  

 

[√(4t)  - √ (4*1)] / [t - 1]  =

 

[ √(4t) - √(4)] / [ t - 1]  =

 

[ 2 √(t) - 2] / [t - 1]  =

 

2 [√(t) - 1] / [t - 1]  =

 

2[√(t) - 1] / [ (√(t) - 1) (√(t) + 1) ]  =

 

2 / (√(t) + 1)                     

 

 

b.) t0= 4

 

[√(4t)  - √ (4*4)] / [t - 4] =

 

[ √(4t)  - √(16)] / [ t - 4] =

 

[ 2 √(t) - 4 /  [t - 4]  =

 

2 [√(t)  - 2] / [t - 4]  =

 

2 [√(t)  - 2] /   [ (√(t)  - 2) (√(t)  + 2) ] =

 

2 / (√(t)  + 2)   

 

 

 

cool cool cool                      

 Feb 11, 2016
edited by CPhill  Feb 11, 2016
 #1
avatar+94526 
+5
Best Answer

a.) t0 = 1

                                              

[f(t)- f(t0)] / [ t - t0 ] =  

 

[√(4t)  - √ (4*1)] / [t - 1]  =

 

[ √(4t) - √(4)] / [ t - 1]  =

 

[ 2 √(t) - 2] / [t - 1]  =

 

2 [√(t) - 1] / [t - 1]  =

 

2[√(t) - 1] / [ (√(t) - 1) (√(t) + 1) ]  =

 

2 / (√(t) + 1)                     

 

 

b.) t0= 4

 

[√(4t)  - √ (4*4)] / [t - 4] =

 

[ √(4t)  - √(16)] / [ t - 4] =

 

[ 2 √(t) - 4 /  [t - 4]  =

 

2 [√(t)  - 2] / [t - 4]  =

 

2 [√(t)  - 2] /   [ (√(t)  - 2) (√(t)  + 2) ] =

 

2 / (√(t)  + 2)   

 

 

 

cool cool cool                      

CPhill Feb 11, 2016
edited by CPhill  Feb 11, 2016
 #2
avatar+209 
0

In part B, how did you split the bottom x-4 into (x+2)(x-2)

I thought you could only do that if it was (x-4)^2?

 Feb 11, 2016
 #3
avatar+94526 
+5

Note, Yura_chan......

 

t - 4     can be factored  as

 

(√(t)  - 2) (√(t)  + 2) 

 

Because

 

√(t) * √(t)   - 2√(t)  + 2√(t)  (-2)*(+2)   =

 

t  -  4

 

 

 

cool cool cool

 Feb 11, 2016
edited by CPhill  Feb 11, 2016

7 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.