+0  
 
0
433
3
avatar+209 

f(x)= sqrt(4t)

Find the instantaneous velocity using f(t)- f(t0)/ t-t0

a.) t0 = 1
b.) t0= 4

Thank you!

Yura_chan  Feb 11, 2016

Best Answer 

 #1
avatar+87301 
+5

a.) t0 = 1

                                              

[f(t)- f(t0)] / [ t - t0 ] =  

 

[√(4t)  - √ (4*1)] / [t - 1]  =

 

[ √(4t) - √(4)] / [ t - 1]  =

 

[ 2 √(t) - 2] / [t - 1]  =

 

2 [√(t) - 1] / [t - 1]  =

 

2[√(t) - 1] / [ (√(t) - 1) (√(t) + 1) ]  =

 

2 / (√(t) + 1)                     

 

 

b.) t0= 4

 

[√(4t)  - √ (4*4)] / [t - 4] =

 

[ √(4t)  - √(16)] / [ t - 4] =

 

[ 2 √(t) - 4 /  [t - 4]  =

 

2 [√(t)  - 2] / [t - 4]  =

 

2 [√(t)  - 2] /   [ (√(t)  - 2) (√(t)  + 2) ] =

 

2 / (√(t)  + 2)   

 

 

 

cool cool cool                      

CPhill  Feb 11, 2016
edited by CPhill  Feb 11, 2016
 #1
avatar+87301 
+5
Best Answer

a.) t0 = 1

                                              

[f(t)- f(t0)] / [ t - t0 ] =  

 

[√(4t)  - √ (4*1)] / [t - 1]  =

 

[ √(4t) - √(4)] / [ t - 1]  =

 

[ 2 √(t) - 2] / [t - 1]  =

 

2 [√(t) - 1] / [t - 1]  =

 

2[√(t) - 1] / [ (√(t) - 1) (√(t) + 1) ]  =

 

2 / (√(t) + 1)                     

 

 

b.) t0= 4

 

[√(4t)  - √ (4*4)] / [t - 4] =

 

[ √(4t)  - √(16)] / [ t - 4] =

 

[ 2 √(t) - 4 /  [t - 4]  =

 

2 [√(t)  - 2] / [t - 4]  =

 

2 [√(t)  - 2] /   [ (√(t)  - 2) (√(t)  + 2) ] =

 

2 / (√(t)  + 2)   

 

 

 

cool cool cool                      

CPhill  Feb 11, 2016
edited by CPhill  Feb 11, 2016
 #2
avatar+209 
0

In part B, how did you split the bottom x-4 into (x+2)(x-2)

I thought you could only do that if it was (x-4)^2?

Yura_chan  Feb 11, 2016
 #3
avatar+87301 
+5

Note, Yura_chan......

 

t - 4     can be factored  as

 

(√(t)  - 2) (√(t)  + 2) 

 

Because

 

√(t) * √(t)   - 2√(t)  + 2√(t)  (-2)*(+2)   =

 

t  -  4

 

 

 

cool cool cool

CPhill  Feb 11, 2016
edited by CPhill  Feb 11, 2016

14 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.