I don't even know what its supposed to be.
A few extra brackets to remove the ambiguity would help.
Hi Guest, it is awefully quiet around here tonight :/
I am not aware of any ambiguity.
It is just a very advanced question. :(
What are the upper and lower bounds of the integral? If the lower bound and upper bound are equal then integral equals 0.
True but irrelevant.
Integrals do not have to have bounds.
This is presented as an indefinite integral.
You did make me thingk about what the graph looked like though.
I mean the function that is being integrated.
Here it is:
https://www.desmos.com/calculator/nldfhv0hot
Looking at the graph, I do not understand why the integral has an imaginary element???
1/2 i (polygamma(0, 1/4-i/4)-polygamma(0, 3/4-i/4))+(-1/2+i/2) x ((1+i)+polygamma(0, 1/4-i/4)-polygamma(0, 5/4-i/4))+1/2 x^2 ((-3-4 i)-polygamma(0, 1/4-i/4)-(2+i) polygamma(0, 3/4-i/4)+polygamma(0, 5/4-i/4)+(2+i) polygamma(0, 7/4-i/4))+(-1/6-i/6) x^3 ((6+18 i)+(1+i) polygamma(0, 1/4-i/4)+(5+5 i) polygamma(0, 3/4-i/4)+(3+6 i) polygamma(0, 5/4-i/4)-(5+5 i) polygamma(0, 7/4-i/4)-(4+7 i) polygamma(0, 9/4-i/4))+1/12 x^4 ((102+24 i)+(4-i) polygamma(0, 1/4-i/4)+(24-3 i) polygamma(0, 3/4-i/4)+(50-2 i) polygamma(0, 5/4-i/4)+(16+8 i) polygamma(0, 7/4-i/4)-(54-3 i) polygamma(0, 9/4-i/4)-(40+5 i) polygamma(0, 11/4-i/4))+O(x^5)
(Taylor series)
AT x=0
_______________________________________________________________________________
((371/812825-(433 i)/812825) Gamma(3/2-i/2) exp(-(1+i) pi floor(((3 pi)/2-arg(x+i))/(2 pi))-2 i tan^(-1)(x)) ((2010+155 i) Gamma(1/2-i/2)^2 Gamma(1/2+i/2) (e^(2 i tan^(-1)(x)))^(1/2+i/2) exp((1/4+i/4) (2 i log(x+i)-2 i log(2)+pi)+(1/4+i/4) (x+i)+(1/16-i/16) (x+i)^2-(1/48+i/48) (x+i)^3-(1/128-i/128) (x+i)^4+(1/320+i/320) (x+i)^5+O((x+i)^6))+(2010+155 i) Gamma(-1/2-i/2) exp(((1/4-i/4) (2 i log(x+i)-2 i log(2)+pi)+(1/4-i/4) (x+i)-(1/16+i/16) (x+i)^2-(1/48-i/48) (x+i)^3+(1/128+i/128) (x+i)^4+(1/320-i/320) (x+i)^5+O((x+i)^6))+2 i tan^(-1)(x))-(773+464 i) Gamma(-1/2-i/2) exp(((1/4-(3 i)/4) (2 i log(x+i)-2 i log(2)+pi)+(1/4-(3 i)/4) (x+i)-(3/16+i/16) (x+i)^2-(1/48-i/16) (x+i)^3+(3/128+i/128) (x+i)^4+(1/320-(3 i)/320) (x+i)^5+O((x+i)^6))+2 i tan^(-1)(x))+(440+345 i) Gamma(-1/2-i/2) exp(((1/4-(5 i)/4) (2 i log(x+i)-2 i log(2)+pi)+(1/4-(5 i)/4) (x+i)-(5/16+i/16) (x+i)^2-(1/48-(5 i)/48) (x+i)^3+(5/128+i/128) (x+i)^4+(1/320-i/64) (x+i)^5+O((x+i)^6))+2 i tan^(-1)(x))-(303+266 i) Gamma(-1/2-i/2) exp(((1/4-(7 i)/4) (2 i log(x+i)-2 i log(2)+pi)+(1/4-(7 i)/4) (x+i)-(7/16+i/16) (x+i)^2-(1/48-(7 i)/48) (x+i)^3+(7/128+i/128) (x+i)^4+(1/320-(7 i)/320) (x+i)^5+O((x+i)^6))+2 i tan^(-1)(x))+(230+215 i) Gamma(-1/2-i/2) exp(((1/4-(9 i)/4) (2 i log(x+i)-2 i log(2)+pi)+(1/4-(9 i)/4) (x+i)-(9/16+i/16) (x+i)^2-(1/48-(3 i)/16) (x+i)^3+(9/128+i/128) (x+i)^4+(1/320-(9 i)/320) (x+i)^5+O((x+i)^6))+2 i tan^(-1)(x))-(185+180 i) Gamma(-1/2-i/2) exp(((1/4-(11 i)/4) (2 i log(x+i)-2 i log(2)+pi)+(1/4-(11 i)/4) (x+i)-(11/16+i/16) (x+i)^2-(1/48-(11 i)/48) (x+i)^3+(11/128+i/128) (x+i)^4+(1/320-(11 i)/320) (x+i)^5+O((x+i)^6))+2 i tan^(-1)(x))))/Gamma(1/2-i/2)^2
AT x=-i
_______________________________________________________________________________
(1917/13818025+(1361 i)/13818025) e^((1+i) pi floor((pi-2 arg(x-i))/(4 pi))) ((1390-8195 i) exp((1/4+i/4) (-2 i log(x-i)+2 i log(2)+pi)+(1/4+i/4) (x-i)-(1/16-i/16) (x-i)^2-(1/48+i/48) (x-i)^3+(1/128-i/128) (x-i)^4+(1/320+i/320) (x-i)^5+O((x-i)^6))+(1083+3556 i) exp((1/4+(3 i)/4) (-2 i log(x-i)+2 i log(2)+pi)+(1/4+(3 i)/4) (x-i)-(3/16-i/16) (x-i)^2-(1/48+i/16) (x-i)^3+(3/128-i/128) (x-i)^4+(1/320+(3 i)/320) (x-i)^5+O((x-i)^6))-(940+2105 i) exp((1/4+(5 i)/4) (-2 i log(x-i)+2 i log(2)+pi)+(1/4+(5 i)/4) (x-i)-(5/16-i/16) (x-i)^2-(1/48+(5 i)/48) (x-i)^3+(5/128-i/128) (x-i)^4+(1/320+i/64) (x-i)^5+O((x-i)^6))+(761+1478 i) exp((1/4+(7 i)/4) (-2 i log(x-i)+2 i log(2)+pi)+(1/4+(7 i)/4) (x-i)-(7/16-i/16) (x-i)^2-(1/48+(7 i)/48) (x-i)^3+(7/128-i/128) (x-i)^4+(1/320+(7 i)/320) (x-i)^5+O((x-i)^6))-(630+1135 i) exp((1/4+(9 i)/4) (-2 i log(x-i)+2 i log(2)+pi)+(1/4+(9 i)/4) (x-i)-(9/16-i/16) (x-i)^2-(1/48+(3 i)/16) (x-i)^3+(9/128-i/128) (x-i)^4+(1/320+(9 i)/320) (x-i)^5+O((x-i)^6))+(535+920 i) exp((1/4+(11 i)/4) (-2 i log(x-i)+2 i log(2)+pi)+(1/4+(11 i)/4) (x-i)-(11/16-i/16) (x-i)^2-(1/48+(11 i)/48) (x-i)^3+(11/128-i/128) (x-i)^4+(1/320+(11 i)/320) (x-i)^5+O((x-i)^6))-(464+773 i) exp((1/4+(13 i)/4) (-2 i log(x-i)+2 i log(2)+pi)+(1/4+(13 i)/4) (x-i)-(13/16-i/16) (x-i)^2-(1/48+(13 i)/48) (x-i)^3+(13/128-i/128) (x-i)^4+(1/320+(13 i)/320) (x-i)^5+O((x-i)^6)))
AT x=i
________________________________________________________________________________
-1/2 e^(pi/2) (2 log(1/x)+i pi+2 gamma+log(4)+2 polygamma(0, 1/2-i/2))+(e^(pi/2) ((1+2 i)+(1+i) polygamma(0, 1/2-i/2)-(1+i) polygamma(0, 3/2-i/2)))/x-(i e^(pi/2) (polygamma(0, 1/2-i/2)-(3+i) polygamma(0, 3/2-i/2)+(2+i) polygamma(0, 5/2-i/2)))/x^2-((1/9-i/9) e^(pi/2) ((-2+4 i)+(3+3 i) polygamma(0, 1/2-i/2)-(18+18 i) polygamma(0, 3/2-i/2)+(27+36 i) polygamma(0, 5/2-i/2)-(12+21 i) polygamma(0, 7/2-i/2)))/x^3+(e^(pi/2) (1+(4+16 i) polygamma(0, 1/2-i/2)-(16+112 i) polygamma(0, 3/2-i/2)+(24+312 i) polygamma(0, 5/2-i/2)+(8-376 i) polygamma(0, 7/2-i/2)-(20-160 i) polygamma(0, 9/2-i/2)))/(24 x^4)+(e^(pi/2) ((3+12 i)+(15-5 i) polygamma(0, 1/2-i/2)-(155-45 i) polygamma(0, 3/2-i/2)+(590-130 i) polygamma(0, 5/2-i/2)-(1110-170 i) polygamma(0, 7/2-i/2)+(1025-75 i) polygamma(0, 9/2-i/2)-(365+5 i) polygamma(0, 11/2-i/2)))/(30 x^5)+O((1/x)^6)
(Puiseux series)
AT x=∞