Processing math: 100%
 
+0  
 
0
917
10
avatar+97 

xdxx2+6x+10

 

x2sinxdx

 Feb 13, 2017
 #1
avatar+26396 
+20

2. \int x^2sinxdx ?

 

Formula:

(uv) dx=uv(uv) dx

 

( x2sin(x) ) dxu=x2u=2xv=sin(x)v=cos(x)=x2cos(x)+2(xcos(x)) dx( xcos(x) ) dxu=xu=1v=cos(x)v=sin(x)=xsin(x)(1sin(x)) dx=xsin(x)(sin(x)) dxsin(x)=cos(x)=xsin(x)+cos(x)( x2sin(x) ) dx=x2cos(x)+2[xsin(x)+cos(x)]+c=x2cos(x)+2xsin(x)+2cos(x)+c=2xsin(x)(x22)cos(x)+c

 

 

laugh

 Feb 13, 2017
edited by heureka  Feb 13, 2017
 #4
avatar+97 
0

Thanks a lot!

Voncave  Feb 13, 2017
 #2
avatar
+10

1)

Take the integral:
 integral x/(x^2 + 6 x + 10) dx
Rewrite the integrand x/(x^2 + 6 x + 10) as (2 x + 6)/(2 (x^2 + 6 x + 10)) - 3/(x^2 + 6 x + 10):
 = integral((2 x + 6)/(2 (x^2 + 6 x + 10)) - 3/(x^2 + 6 x + 10)) dx
Integrate the sum term by term and factor out constants:
 = 1/2 integral(2 x + 6)/(x^2 + 6 x + 10) dx - 3 integral1/(x^2 + 6 x + 10) dx
For the integrand (2 x + 6)/(x^2 + 6 x + 10), substitute u = x^2 + 6 x + 10 and du = (2 x + 6) dx:
 = 1/2 integral1/u du - 3 integral1/(x^2 + 6 x + 10) dx
The integral of 1/u is log(u):
 = (log(u))/2 - 3 integral1/(x^2 + 6 x + 10) dx
For the integrand 1/(x^2 + 6 x + 10), complete the square:
 = (log(u))/2 - 3 integral1/((x + 3)^2 + 1) dx
For the integrand 1/((x + 3)^2 + 1), substitute s = x + 3 and ds = dx:
 = (log(u))/2 - 3 integral1/(s^2 + 1) ds
The integral of 1/(s^2 + 1) is tan^(-1)(s):
 = (log(u))/2 - 3 tan^(-1)(s) + constant
Substitute back for s = x + 3:
 = (log(u))/2 - 3 tan^(-1)(x + 3) + constant
Substitute back for u = x^2 + 6 x + 10:
Answer: |= 1/2 log(x^2 + 6 x + 10) - 3 tan^(-1)(x + 3) + constant

 

2)

 

Take the integral:
 integral x^2 sin(x) dx
For the integrand x^2 sin(x), integrate by parts, integral f dg = f g - integral g df, where
 f = x^2, dg = sin(x) dx, df = 2 x dx, g = -cos(x):
 = -x^2 cos(x) + 2 integral x cos(x) dx
For the integrand x cos(x), integrate by parts, integral f dg = f g - integral g df, where
 f = x, dg = cos(x) dx, df = dx, g = sin(x):
 = -x^2 cos(x) + 2 x sin(x) - 2 integral sin(x) dx
The integral of sin(x) is -cos(x):
 = x^2 (-cos(x)) + 2 x sin(x) + 2 cos(x) + constant
Which is equal to:
Answer: |= 2 x sin(x) - (x^2 - 2) cos(x) + constant

 Feb 13, 2017
 #5
avatar+97 
0

Thanks a lot!

Voncave  Feb 13, 2017
 #3
avatar+118702 
+10

int of x^2sinx dx

 

x2sinxdxIntegrate by partsu=x2v=sinxu=2xv=cosx=[x2cosx]2xcosxdx=[x2cosx]+2xcosxdxIntegrate by partsu=xv=cosxu=1v=sinx=[x2cosx]+2{(xsinx)sinxdx}=[x2cosx]+2{xsinx+cosx}+c=x2cosx+2xsinx+2cosx+c=(2x2)cosx+2xsinx+c

 Feb 13, 2017
 #6
avatar+97 
+5

Thanks a lot!

Voncave  Feb 13, 2017
 #7
avatar+118702 
+10

1)

xx2+6x+10dx=122x+6x2+6x+10dx3x2+6x+10dx=ln|x2+6x+10|2+31x2+6x+9+1dx=ln|x2+6x+10|2+31(x+3)2+1dx=ln|x2+6x+10|2+3tan1(x+3)+c

 Feb 13, 2017
 #8
avatar+97 
+5

Thanks again!laugh

Voncave  Feb 13, 2017

0 Online Users