2. \int x^2sinxdx ?
Formula:
∫(u⋅v′) dx=u⋅v−∫(u′⋅v) dx
∫( x2⋅sin(x) ) dxu=x2u′=2xv′=sin(x)v=−cos(x)=−x2⋅cos(x)+2⋅∫(x⋅cos(x)) dx∫( x⋅cos(x) ) dxu=xu′=1v′=cos(x)v=sin(x)=x⋅sin(x)−∫(1⋅sin(x)) dx=x⋅sin(x)−∫(sin(x)) dx∫sin(x)=−cos(x)=x⋅sin(x)+cos(x)∫( x2⋅sin(x) ) dx=−x2⋅cos(x)+2⋅[x⋅sin(x)+cos(x)]+c=−x2⋅cos(x)+2⋅x⋅sin(x)+2cos(x)+c=2⋅x⋅sin(x)−(x2−2)⋅cos(x)+c
1)
Take the integral:
integral x/(x^2 + 6 x + 10) dx
Rewrite the integrand x/(x^2 + 6 x + 10) as (2 x + 6)/(2 (x^2 + 6 x + 10)) - 3/(x^2 + 6 x + 10):
= integral((2 x + 6)/(2 (x^2 + 6 x + 10)) - 3/(x^2 + 6 x + 10)) dx
Integrate the sum term by term and factor out constants:
= 1/2 integral(2 x + 6)/(x^2 + 6 x + 10) dx - 3 integral1/(x^2 + 6 x + 10) dx
For the integrand (2 x + 6)/(x^2 + 6 x + 10), substitute u = x^2 + 6 x + 10 and du = (2 x + 6) dx:
= 1/2 integral1/u du - 3 integral1/(x^2 + 6 x + 10) dx
The integral of 1/u is log(u):
= (log(u))/2 - 3 integral1/(x^2 + 6 x + 10) dx
For the integrand 1/(x^2 + 6 x + 10), complete the square:
= (log(u))/2 - 3 integral1/((x + 3)^2 + 1) dx
For the integrand 1/((x + 3)^2 + 1), substitute s = x + 3 and ds = dx:
= (log(u))/2 - 3 integral1/(s^2 + 1) ds
The integral of 1/(s^2 + 1) is tan^(-1)(s):
= (log(u))/2 - 3 tan^(-1)(s) + constant
Substitute back for s = x + 3:
= (log(u))/2 - 3 tan^(-1)(x + 3) + constant
Substitute back for u = x^2 + 6 x + 10:
Answer: |= 1/2 log(x^2 + 6 x + 10) - 3 tan^(-1)(x + 3) + constant
2)
Take the integral:
integral x^2 sin(x) dx
For the integrand x^2 sin(x), integrate by parts, integral f dg = f g - integral g df, where
f = x^2, dg = sin(x) dx, df = 2 x dx, g = -cos(x):
= -x^2 cos(x) + 2 integral x cos(x) dx
For the integrand x cos(x), integrate by parts, integral f dg = f g - integral g df, where
f = x, dg = cos(x) dx, df = dx, g = sin(x):
= -x^2 cos(x) + 2 x sin(x) - 2 integral sin(x) dx
The integral of sin(x) is -cos(x):
= x^2 (-cos(x)) + 2 x sin(x) + 2 cos(x) + constant
Which is equal to:
Answer: |= 2 x sin(x) - (x^2 - 2) cos(x) + constant
int of x^2sinx dx
∫x2sinxdxIntegrate by partsu=x2v′=sinxu′=2xv=−cosx=[−x2cosx]−∫−2xcosxdx=[−x2cosx]+2∫xcosxdxIntegrate by partsu=xv′=cosxu′=1v=sinx=[−x2cosx]+2{(xsinx)−∫sinxdx}=[−x2cosx]+2{xsinx+cosx}+c=−x2cosx+2xsinx+2cosx+c=(2−x2)cosx+2xsinx+c
1)
∫xx2+6x+10dx=12∫2x+6x2+6x+10dx−∫−3x2+6x+10dx=ln|x2+6x+10|2+3∫1x2+6x+9+1dx=ln|x2+6x+10|2+3∫1(x+3)2+1dx=ln|x2+6x+10|2+3tan−1(x+3)+c