+0  
 
+5
624
7
avatar+16 

$$$\int \frac{1}{\left(x^2+\frac{3}{4}\right)}dx$$$

 

Somobody who know how to solve this?? Please :)

blaster01  Dec 7, 2014

Best Answer 

 #6
avatar+92763 
+10

I did this one a little differently...there is a "fudge factor" involved, but it's only a slight "fudge"

∫ x / √(3 - 4x^2) dx

let u = 3 - 4x^2    du  = -8x dx    du/-8 = x dx

So we have

-(1/8)∫u^(-1/2) du =

-(1/4)u^(1/2) + C =

-(1/4)(3 - 4x^2)^(1/2) + C

 

 

 

-

CPhill  Dec 8, 2014
 #1
avatar+27229 
+10

Integral:

 

.

Alan  Dec 7, 2014
 #2
avatar+94114 
+5

(2/sqrt3)tan^(-1)(2x/sqrt3)+c

 

$$\int\;\frac{1}{x^2+\frac{3}{4}}\;dx\;=\;\frac{2}{\sqrt3}\;tan^{-1}\;\frac{2x}{\sqrt3}+c$$

 

$$\int\;\frac{1}{x^2+a^2}\;dx\;=\;\frac{1}{a}\;tan^{-1}\;\frac{x}{a}+c$$

Melody  Dec 7, 2014
 #3
avatar+16 
0

thank you alan a lot, but i have one more problem with this:

 

$$$\int \left(\frac{x}{\sqrt{3-4x^2}}\right)dx$$$

 

can you help me please??

blaster01  Dec 7, 2014
 #4
avatar+94114 
+10

Some careless errors have been fixed - Thanks very much Alan.

It is correct now.

I have been perfecting my trademark here.

 If there is a R E A L L Y  L O N G  W A Y to do something I WILL FIND IT.

In my opinion CPhill's answer is the best one here.

It is really elegant.    Thanks Chris.

Heureka's answer is also much better than mine.    Thanks Heureka   

 

 

$$\int \left(\frac{x}{\sqrt{3-4x^2}}\right)dx\\\\
=\int \left(\frac{x}{\sqrt{4*(\frac{3}{4}-x^2)}}\right)dx\\\\
=\int \frac{x}{2\sqrt{(\frac{3}{4}-x^2)}}\;dx\\\\
=\frac{1}{2}\;\int \frac{x}{\sqrt{(\frac{3}{4}-x^2)}}\;dx\\\\
=\frac{1}{2}\;\int \frac{x}{\sqrt{(\frac{\sqrt{3}}{2})^2-x^2}}\;dx\\\\$$

 

$$\\=\frac{1}{2}\;\int \frac{x}{\sqrt{a^2-x^2}}\;dx\qquad where \quad a=\frac{\sqrt3}{2}\\\\
=\frac{1}{2}\;\int\;vu' \;dx\qquad where \quad v=x\;\;and\;\;u'=\frac{1}{\sqrt{a^2-x^2}}\\\\$$

 

 Now use integration by parts to solve.

 

 

$$\\v=x\;\;and\;\;u'=\frac{1}{\sqrt{a^2-x^2}}\\\\
v'=1\qquad u=sin^{-1}\;\frac{x}{a}\\\\
\;\int\; x*\frac{1}{\sqrt{a^2-x^2}}\;dx\\\\$$

 

$$\\=\frac{1}{2}(sin^{-1}\;\frac{x}{a}\;*\;x\;\;-\;\;\int\;sin^{-1}\;\frac{x}{a}\;*\;1\;dx)\\\\
=\frac{1}{2}\left(xsin^{-1}\;\frac{x}{a}\;\;-\left[a\sqrt{1-\frac{x^2}{a^2}}\;+\;xsin^{-1}\;\frac{x}{a}\;\;\right]\right)+c\\\\
=\frac{1}{2}\left(\;-\left[a\sqrt{1-\frac{x^2}{a^2}}\;\right]\right)+c\\\\
=\frac{-1}{2}\left(a\;\sqrt{1-\frac{x^2}{a^2}}\;\right)+c\\\\
=\frac{-1}{2}\left(\frac{\sqrt{3}}{2}\;\sqrt{1-\frac{4x^2}{3}}\;\right)+c\\\\
=\frac{-1}{2}\left(\frac{\sqrt{3}}{2}\;\sqrt{\frac{3-4x^2}{3}}\;\right)+c\\\\
=\frac{-1}{2}\left(\frac{1}{2}\;\sqrt{3-4x^2}\;\right)+c\\\\
=\;\frac{-\sqrt{3-4x^2}}{4}\;+c\\\\$$

Melody  Dec 8, 2014
 #5
avatar+20680 
+10

$$$\int \left(\frac{x}{\sqrt{3-4x^2}}\right)\ dx \quad \text { ?}$$$

$$\small{
\text{
$
\begin{array}{rcl}
&=&\int \left(\frac{ \big{x} }{\sqrt{3\left(1-\frac{4}{3}x^2\right)}} \right) \ dx
\\ \\
&=&\frac{1 }{\sqrt{3}}\int \left(\frac{ \big{x} }{\sqrt{ 1-
\left( \frac{ \big{x} }{ \sqrt \frac{3}{4} } \right)^2 } } \right) \ dx
\end{array}
$
}}
$\\\\$
\small\text{
we substitue: $ \frac{x} {\sqrt{ \frac{3}{4} } } = \sin(u) \quad \Rightarrow \quad \frac{ \ dx} {\sqrt{ \frac{3}{4} } } = \cos(u) \ du$
}}
$\\\\$
\small\text{
and set also: $ x = ( \sqrt{ \frac{3}{4} } ) * \sin(u) \quad $ and $\quad \ dx = ( \sqrt{ \frac{3}{4} } ) * \cos(u) \ du$
}}
$\\\\$
\small\text{
$
=\frac{1 }{\sqrt{3}}\int \left(\frac{ ( \big{ \sqrt{ \frac{3}{4} } ) * \sin(u) } }{\sqrt{ 1-
\big{ \left( \sin(u) \right)^2 } } } \right) ( \sqrt{ \frac{3}{4} } ) * \cos(u) \ du$
}}$$

$$$\\\\$
\small\text{
$
=\frac{1 }{\sqrt{3}}\int \left(
\frac{ ( \big{ \sqrt{
\frac{3}{4}
} ) * \sin(u)
}
}
{ \big{\cos(u) } }
\right) ( \sqrt{ \frac{3}{4} } ) * \cos(u) \ du$
}}
$\\\\$
\small\text{
$
=\dfrac{\frac{3}{4} }{ \sqrt{3} }\int \left(
\sin(u) \ du$
}}
$\\\\$
\small\text{
$
=\frac{ \sqrt{3}}{4}\int \left(
\sin(u) \ du$
}}
$\\\\$
\small\text{
$
=\frac{ \sqrt{3}}{4}\int \left(
\sin(u) \ du \quad | \quad \int\sin(u)\ du = -\cos(u)$
}}
$\\\\$
\small\text{
$
=\frac{ \sqrt{3}}{4}(-\cos(u))$
}}
$\\\\$
\small\text{
$
=-\frac{ \sqrt{3}}{4}\cos(u) \quad | \quad cos(u) = \sqrt{1-\sin(u)^2 }= \sqrt{1-\frac{4}{3}x^2 } $
}}
$\\\\$
\small\text{
$
=-\frac{ \sqrt{3}}{4}\sqrt{1-\frac{4}{3}x^2 } }$
}}
$\\\\$
\small\text{
$
=-\frac{1}{4}\sqrt{3-4x^2 } }$
}}$$

$$\boxed{\int \left(\frac{x}{\sqrt{3-4x^2}}\right)\ dx =-\frac{1}{4}\sqrt{3-4x^2 } \quad + c }$$

heureka  Dec 8, 2014
 #6
avatar+92763 
+10
Best Answer

I did this one a little differently...there is a "fudge factor" involved, but it's only a slight "fudge"

∫ x / √(3 - 4x^2) dx

let u = 3 - 4x^2    du  = -8x dx    du/-8 = x dx

So we have

-(1/8)∫u^(-1/2) du =

-(1/4)u^(1/2) + C =

-(1/4)(3 - 4x^2)^(1/2) + C

 

 

 

-

CPhill  Dec 8, 2014
 #7
avatar+94114 
0

Chris, I really like what you have done.  It is really neat and looks perfectly valid too me.  

 

Heureka's answer is also much better than mine.   Thanks Heureka    

Melody  Dec 9, 2014

7 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.