Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+5
2
1592
7
avatar+16 

$1(x2+34)dx$

 

Somobody who know how to solve this?? Please :)

 Dec 7, 2014

Best Answer 

 #6
avatar+130458 
+10

I did this one a little differently...there is a "fudge factor" involved, but it's only a slight "fudge"

∫ x / √(3 - 4x^2) dx

let u = 3 - 4x^2    du  = -8x dx    du/-8 = x dx

So we have

-(1/8)∫u^(-1/2) du =

-(1/4)u^(1/2) + C =

-(1/4)(3 - 4x^2)^(1/2) + C

 

 

 

-

 Dec 8, 2014
 #1
avatar+33654 
+10

Integral:

 

.

.
 Dec 7, 2014
 #2
avatar+118696 
+5

(2/sqrt3)tan^(-1)(2x/sqrt3)+c

 

1x2+34dx=23tan12x3+c

 

1x2+a2dx=1atan1xa+c

 Dec 7, 2014
 #3
avatar+16 
0

thank you alan a lot, but i have one more problem with this:

 

$(x34x2)dx$

 

can you help me please??

 Dec 7, 2014
 #4
avatar+118696 
+10

Some careless errors have been fixed - Thanks very much Alan.

It is correct now.

I have been perfecting my trademark here.

 If there is a R E A L L Y  L O N G  W A Y to do something I WILL FIND IT.

In my opinion CPhill's answer is the best one here.

It is really elegant.    Thanks Chris.

Heureka's answer is also much better than mine.    Thanks Heureka   

 

 

(x34x2)dx=(x4(34x2))dx=x2(34x2)dx=12x(34x2)dx=12x(32)2x2dx

 

=12xa2x2dxwherea=32=12vudxwherev=xandu=1a2x2

 

 Now use integration by parts to solve.

 

 

v=xandu=1a2x2v=1u=sin1xax1a2x2dx

 

=12(sin1xaxsin1xa1dx)=12(xsin1xa[a1x2a2+xsin1xa])+c=12([a1x2a2])+c=12(a1x2a2)+c=12(3214x23)+c=12(3234x23)+c=12(1234x2)+c=34x24+c

 Dec 8, 2014
 #5
avatar+26396 
+10

$(x34x2) dx ?$

\small{ \text{ $ \begin{array}{rcl} &=&\int \left(\frac{ \big{x} }{\sqrt{3\left(1-\frac{4}{3}x^2\right)}} \right) \ dx  \\ \\ &=&\frac{1 }{\sqrt{3}}\int \left(\frac{ \big{x} }{\sqrt{ 1- \left( \frac{ \big{x} }{ \sqrt \frac{3}{4} } \right)^2 } } \right) \ dx  \end{array}  $ }}  $\\\\$ \small\text{ we substitue: $ \frac{x} {\sqrt{ \frac{3}{4} } } = \sin(u) \quad \Rightarrow \quad \frac{ \ dx} {\sqrt{ \frac{3}{4} } } = \cos(u) \ du$ }} $\\\\$  \small\text{  and set also: $ x = ( \sqrt{ \frac{3}{4} } ) * \sin(u) \quad $ and $\quad \ dx = ( \sqrt{ \frac{3}{4} } ) * \cos(u) \ du$ }} $\\\\$  \small\text{  $ =\frac{1 }{\sqrt{3}}\int \left(\frac{ ( \big{ \sqrt{ \frac{3}{4} } ) * \sin(u) } }{\sqrt{ 1- \big{ \left( \sin(u) \right)^2 } } } \right) ( \sqrt{ \frac{3}{4} } ) * \cos(u) \ du$ }}

$\\\\$  \small\text{  $ =\frac{1 }{\sqrt{3}}\int \left( \frac{ ( \big{ \sqrt{  \frac{3}{4} } ) * \sin(u)  }  }  { \big{\cos(u) } } \right) ( \sqrt{ \frac{3}{4} } ) * \cos(u) \ du$  }} $\\\\$  \small\text{  $ =\dfrac{\frac{3}{4} }{ \sqrt{3} }\int \left( \sin(u) \ du$  }} $\\\\$  \small\text{  $ =\frac{ \sqrt{3}}{4}\int \left( \sin(u) \ du$  }} $\\\\$  \small\text{  $ =\frac{ \sqrt{3}}{4}\int \left( \sin(u) \ du \quad | \quad \int\sin(u)\ du = -\cos(u)$  }} $\\\\$  \small\text{  $ =\frac{ \sqrt{3}}{4}(-\cos(u))$  }} $\\\\$  \small\text{  $ =-\frac{ \sqrt{3}}{4}\cos(u) \quad | \quad cos(u) = \sqrt{1-\sin(u)^2 }= \sqrt{1-\frac{4}{3}x^2 } $  }} $\\\\$  \small\text{  $ =-\frac{ \sqrt{3}}{4}\sqrt{1-\frac{4}{3}x^2 } }$  }} $\\\\$  \small\text{  $ =-\frac{1}{4}\sqrt{3-4x^2 } }$  }}

(x34x2) dx=1434x2+c

.
 Dec 8, 2014
 #6
avatar+130458 
+10
Best Answer

I did this one a little differently...there is a "fudge factor" involved, but it's only a slight "fudge"

∫ x / √(3 - 4x^2) dx

let u = 3 - 4x^2    du  = -8x dx    du/-8 = x dx

So we have

-(1/8)∫u^(-1/2) du =

-(1/4)u^(1/2) + C =

-(1/4)(3 - 4x^2)^(1/2) + C

 

 

 

-

CPhill Dec 8, 2014
 #7
avatar+118696 
0

Chris, I really like what you have done.  It is really neat and looks perfectly valid too me.  

 

Heureka's answer is also much better than mine.   Thanks Heureka    

 Dec 9, 2014

2 Online Users