Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1
1583
4
avatar

integral(sin^-1(x)dx)

 Dec 17, 2015

Best Answer 

 #1
avatar+118703 
+25

This one looks like a challenge for me.  :)

 

integral(sin^-1(x)dx)

 

I am going to use integration by parts.

 

udvdxdx=uvvdudxdx Letu=asin(x)anddvdx=1thendudx=11x2andv=xsoasin(x)1dx=asin(x)xx11x2dxasin(x)dx=xasin(x)x1x2dx

 

 

Now I need to work out what this is

 

x1x2dx letg=1x2dgdx=2xdx=dg2x x1x2dx =xgdx =xgdg2x =0.5g0.5dg =0.5g0.50.5 =g0.5 =(1x2)0.5 =1x2 

so

 

asin(x)dx=xasin(x)x1x2dx=asin(x)dx=xasin(x)1x2+c=asin(x)dx=xasin(x)+1x2+cor=sin1(x)dx=xsin1(x)+1x2+c

 Dec 18, 2015
 #1
avatar+118703 
+25
Best Answer

This one looks like a challenge for me.  :)

 

integral(sin^-1(x)dx)

 

I am going to use integration by parts.

 

udvdxdx=uvvdudxdx Letu=asin(x)anddvdx=1thendudx=11x2andv=xsoasin(x)1dx=asin(x)xx11x2dxasin(x)dx=xasin(x)x1x2dx

 

 

Now I need to work out what this is

 

x1x2dx letg=1x2dgdx=2xdx=dg2x x1x2dx =xgdx =xgdg2x =0.5g0.5dg =0.5g0.50.5 =g0.5 =(1x2)0.5 =1x2 

so

 

asin(x)dx=xasin(x)x1x2dx=asin(x)dx=xasin(x)1x2+c=asin(x)dx=xasin(x)+1x2+cor=sin1(x)dx=xsin1(x)+1x2+c

Melody Dec 18, 2015
 #2
avatar+118703 
0

Thanks Hayley :)

 Dec 18, 2015
 #3
avatar+8581 
+5

Who said it was me...? ^.-

 Dec 18, 2015
 #4
avatar+118703 
0

Ah Hayley, thanks also be due to Sir CPhill and Serf Guest,

 

The Queen hath special magical powers Mistress Hayley, She can see all with her chrystal sphere.

Morgan La Faye loaned The Queen the orb so She could better govern Camelot!

 

By order of:

Queen Guinevere.

Sovereign of the Magical Kingdom of Camelot.

 Dec 19, 2015
edited by Melody  Dec 19, 2015

0 Online Users