This one looks like a challenge for me. :)
integral(sin^-1(x)dx)
I am going to use integration by parts.
∫udvdxdx=uv−∫vdudxdx Letu=asin(x)anddvdx=1thendudx=1√1−x2andv=xso∫asin(x)∗1dx=asin(x)∗x−∫x1√1−x2dx∫asin(x)dx=x∗asin(x)−∫x√1−x2dx
Now I need to work out what this is
∫x√1−x2dx letg=1−x2dgdx=−2xdx=dg−2x ∫x√1−x2dx =∫x√gdx =∫x√g∗dg−2x =−0.5∫g−0.5dg =−0.5∗g0.50.5 =−g0.5 =−(1−x2)0.5 =−√1−x2
so
∫asin(x)dx=x∗asin(x)−∫x√1−x2dx=∫asin(x)dx=x∗asin(x)−−√1−x2+c=∫asin(x)dx=x∗asin(x)+√1−x2+cor=∫sin−1(x)dx=xsin−1(x)+√1−x2+c
This one looks like a challenge for me. :)
integral(sin^-1(x)dx)
I am going to use integration by parts.
∫udvdxdx=uv−∫vdudxdx Letu=asin(x)anddvdx=1thendudx=1√1−x2andv=xso∫asin(x)∗1dx=asin(x)∗x−∫x1√1−x2dx∫asin(x)dx=x∗asin(x)−∫x√1−x2dx
Now I need to work out what this is
∫x√1−x2dx letg=1−x2dgdx=−2xdx=dg−2x ∫x√1−x2dx =∫x√gdx =∫x√g∗dg−2x =−0.5∫g−0.5dg =−0.5∗g0.50.5 =−g0.5 =−(1−x2)0.5 =−√1−x2
so
∫asin(x)dx=x∗asin(x)−∫x√1−x2dx=∫asin(x)dx=x∗asin(x)−−√1−x2+c=∫asin(x)dx=x∗asin(x)+√1−x2+cor=∫sin−1(x)dx=xsin−1(x)+√1−x2+c
Ah Hayley, thanks also be due to Sir CPhill and Serf Guest,
The Queen hath special magical powers Mistress Hayley, She can see all with her chrystal sphere.
Morgan La Faye loaned The Queen the orb so She could better govern Camelot!
By order of:
Queen Guinevere.
Sovereign of the Magical Kingdom of Camelot.