1. Given a constant a>0 , show that \(\int_{a}^{-a} f(x)dx=\int_{0}^{a} [f(-x)+f(x)]dx .....and hence, evaluate \int_{-1}^{1} ln(x+\sqrt{1+x^2})dx \)
2.Prove or disprove : If f is continuous , then \(\int_{0}^{1} f(x) dx=\int_{0}^{1} f(1-x)dx\)
#2 1 1
1/2x^2 = 1/2 (1^) = 1/2 x-1/2x^2 = 1- 1/2(1^2) = 1/2
0 0