Problem: (1/3)(x + 3)2
The anti-derivative is: (1/3)·2·(x + 3) = (2x + 6)/3 (by using the chain rule)
If you multiply out the original problem: (1/3)(x + 3)2 = (1/3)(x2 + 6x + 9)
which has: (1/3)·(2x + 6) = (2x + 6)/3 as its anti-derivative; the same as before.
Now: evaluate (2x + 6)/3 when x = 2
and evaluate it when x = 1
and subtract the second answer from the first.
Lets see.
\(\displaystyle \int_1^2 \frac{(x+3)^2}{3} dx\\ =\displaystyle \frac{1}{3}\int_1^2 (x^2+6x+9) dx\\ =\displaystyle \frac{1}{3}* \left[\frac{x^3}{3}+\frac{6x^2}{2}+9x\right] _1^2\\ =\displaystyle \frac{1}{3}* \left[(\frac{2^3}{3}+\frac{6*2^2}{2}+9*2)-(\frac{1^3}{3}+\frac{6*1^2}{2}+9*1)\right] \\ =\displaystyle \frac{1}{3}* \left[(\frac{8}{3}+\frac{24}{2}+18)-(\frac{1}{3}+\frac{6}{2}+9)\right] \\ =\displaystyle \frac{1}{3}* \left[(\frac{7}{3}+\frac{18}{2}+9)\right]\\ =\displaystyle \frac{1}{3}* \left[(\frac{7}{3}+18)\right]\\ =\displaystyle \left[(\frac{7}{9}+6)\right]\\~\\ =6\frac{7}{9}\)
LaTex:
\displaystyle \int_1^2 \frac{(x+3)^2}{3} dx\\
=\displaystyle \frac{1}{3}\int_1^2 (x^2+6x+9) dx\\
=\displaystyle \frac{1}{3}* \left[\frac{x^3}{3}+\frac{6x^2}{2}+9x\right] _1^2\\
=\displaystyle \frac{1}{3}* \left[(\frac{2^3}{3}+\frac{6*2^2}{2}+9*2)-(\frac{1^3}{3}+\frac{6*1^2}{2}+9*1)\right] \\
=\displaystyle \frac{1}{3}* \left[(\frac{8}{3}+\frac{24}{2}+18)-(\frac{1}{3}+\frac{6}{2}+9)\right] \\
=\displaystyle \frac{1}{3}* \left[(\frac{7}{3}+\frac{18}{2}+9)\right]\\
=\displaystyle \frac{1}{3}* \left[(\frac{7}{3}+18)\right]\\
=\displaystyle \left[(\frac{7}{9}+6)\right]\\~\\
=6\frac{7}{9}