+0  
 
0
694
3
avatar+86 

I have to integrate the inverse sine of x but I have to do it by parts ???  

How do I do that?

 Oct 18, 2014

Best Answer 

 #1
avatar+97561 
+15

the formula is 

$$\\\boxed{\int f(x)g'(x)\;dx=f(x)g(x)-\int f'(x)g(x)\;dx}\\\\
or\\\\
\boxed{\int uv'\;dx=uv-\int u'v\;dx}\\\\$$

 

$$\\\int sin^{-1}\;dx=\int sin^{-1}*1\;dx\\
let\;u=sin^{-1}\;\;and\;\;v'=1\\\\
u=sin^{-1}x\\
x=sin\;u\\
\frac{dx}{du}=cos\;u\\
\frac{du}{dx}=\frac{1}{cos\;u}\\
\frac{du}{dx}=\frac{1}{\sqrt{cos^2 u}}\\
\frac{du}{dx}=\frac{1}{\sqrt{1-sin^2 u}}\\
\frac{du}{dx}=\frac{1}{\sqrt{1-x^2}}\\$$

$$so\\
u=sin^{-1}x\\
u'=\frac{1}{\sqrt{1-x^2}}\\
v'=1\\
v=x\\\\
\int sin^{-1}x\;dx\\
=\int sin^{-1}*1\;dx\\
=uv-\int u'v\;dx\\
=sin^{-1}x*x-\int \frac{x}{\sqrt{1-x^2}}\;dx\\
=xsin^{-1}x-\int \frac{x}{\sqrt{1-x^2}}\;dx\\\\
let\;\;t=1-x^2\\\\
\frac{dt}{dx}=-2x\\\\
dx=\frac{dt}{-2x}=\frac{dt}{-2\sqrt{1-t}}\\\\
\sqrt{1-t}=x\\\\$$

 

$$so\\\\
xsin^{-1}x-\int \frac{x}{\sqrt{1-x^2}}\;dx\\\\
=xsin^{-1}x-\int \frac{\sqrt{1-t}}{\sqrt{t}}\;\frac{dt}{-2\sqrt{1-t}}\\\\
=xsin^{-1}x-\int \frac{\sqrt{1-t}}{\sqrt{t}(-2\sqrt{1-t})}\;dt\\\\
=xsin^{-1}x-\int \frac{\sqrt{1-t}}{-2\sqrt{t}\sqrt{1-t}}\;dt\\\\
=xsin^{-1}x-\int \frac{1}{-2\sqrt{t}}\;dt\\\\
=xsin^{-1}x+\frac{1}{2}\int t^{-0.5}\;dt\\\\
=xsin^{-1}x+\frac{1}{2}\times \frac{t^{0.5}}{0.5}+c\\\\
=xsin^{-1}x+ \sqrt{t}+c\\\\
=xsin^{-1}x+ \sqrt{1-x^2}+c\\\\$$

.
 Oct 18, 2014
 #1
avatar+97561 
+15
Best Answer

the formula is 

$$\\\boxed{\int f(x)g'(x)\;dx=f(x)g(x)-\int f'(x)g(x)\;dx}\\\\
or\\\\
\boxed{\int uv'\;dx=uv-\int u'v\;dx}\\\\$$

 

$$\\\int sin^{-1}\;dx=\int sin^{-1}*1\;dx\\
let\;u=sin^{-1}\;\;and\;\;v'=1\\\\
u=sin^{-1}x\\
x=sin\;u\\
\frac{dx}{du}=cos\;u\\
\frac{du}{dx}=\frac{1}{cos\;u}\\
\frac{du}{dx}=\frac{1}{\sqrt{cos^2 u}}\\
\frac{du}{dx}=\frac{1}{\sqrt{1-sin^2 u}}\\
\frac{du}{dx}=\frac{1}{\sqrt{1-x^2}}\\$$

$$so\\
u=sin^{-1}x\\
u'=\frac{1}{\sqrt{1-x^2}}\\
v'=1\\
v=x\\\\
\int sin^{-1}x\;dx\\
=\int sin^{-1}*1\;dx\\
=uv-\int u'v\;dx\\
=sin^{-1}x*x-\int \frac{x}{\sqrt{1-x^2}}\;dx\\
=xsin^{-1}x-\int \frac{x}{\sqrt{1-x^2}}\;dx\\\\
let\;\;t=1-x^2\\\\
\frac{dt}{dx}=-2x\\\\
dx=\frac{dt}{-2x}=\frac{dt}{-2\sqrt{1-t}}\\\\
\sqrt{1-t}=x\\\\$$

 

$$so\\\\
xsin^{-1}x-\int \frac{x}{\sqrt{1-x^2}}\;dx\\\\
=xsin^{-1}x-\int \frac{\sqrt{1-t}}{\sqrt{t}}\;\frac{dt}{-2\sqrt{1-t}}\\\\
=xsin^{-1}x-\int \frac{\sqrt{1-t}}{\sqrt{t}(-2\sqrt{1-t})}\;dt\\\\
=xsin^{-1}x-\int \frac{\sqrt{1-t}}{-2\sqrt{t}\sqrt{1-t}}\;dt\\\\
=xsin^{-1}x-\int \frac{1}{-2\sqrt{t}}\;dt\\\\
=xsin^{-1}x+\frac{1}{2}\int t^{-0.5}\;dt\\\\
=xsin^{-1}x+\frac{1}{2}\times \frac{t^{0.5}}{0.5}+c\\\\
=xsin^{-1}x+ \sqrt{t}+c\\\\
=xsin^{-1}x+ \sqrt{1-x^2}+c\\\\$$

Melody Oct 18, 2014
 #2
avatar+96201 
+5

Very nice, Melody.

 

 Oct 18, 2014
 #3
avatar+97561 
0

Thanks Chris  

 Oct 18, 2014

12 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.