We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
93
7
avatar

Hiiii i was solving these problems and dont think theyre right at all://

 

1. ∫1/6 0 (1/(sqrt(1-9x^2))dx **I got 6.49 as my answer....I don't think that's right

 

2. ∫5 3 (1/(x^2-6x+13))dx ** I don't know how to do this one...please help!

 Mar 26, 2019
 #1
avatar+101761 
+3

∫1/6 0 (1/(sqrt(1-9x^2))dx

 

\(\displaystyle\int_0^{\frac{1}{6}}\frac{1}{\sqrt{1-9x^2}}dx\)

 

Here is a site that should help

 

https://www.integral-calculator.com/

 

That site got     pi/18

 Mar 26, 2019
 #2
avatar+101761 
+3

 

I probably do these a little differently from most people.

I cannot remember the integrals so I so them more from scratch.

 

\(\displaystyle\int_0^{\frac{1}{6}}\frac{1}{\sqrt{1-9x^2}}dx\)

 

I am going to use this triangle.

 

\(cos\theta=\sqrt{1-9x^2}\\ sin\theta=3x\\ x=\frac{sin\theta}{3}\\ \frac{dx}{d\theta}=\frac{cos\theta}{3}\\ dx=\frac{cos\theta}{3}d\theta\)

 

also

\(when \;x=0  \\ sin\theta=0\\ \theta=0\\~\\ when\;x=1/6\\ sin\theta=3*(1/6)=1/2\\ \theta = \frac{\pi}{6}\)

 

 

\(\displaystyle\int_0^{\frac{1}{6}}\frac{1}{\sqrt{1-9x^2}}dx\\ =\displaystyle\int_0^{\frac{1}{6}}\frac{1}{cos\theta}dx\\ =\displaystyle\int_0^{\frac{\pi}{6}}\frac{1}{cos\theta}\frac{cos\theta}{3}d\theta\\ =\displaystyle\int_0^{\frac{\pi}{6}}\frac{1}{3}d\theta\\ =\left[\frac{\theta}{3}\right]_0^{\frac{\pi}{6}}\\ =\frac{\pi}{18} \)

.
 Mar 26, 2019
 #3
avatar+101761 
+1

deleted

 Mar 26, 2019
edited by Melody  Mar 26, 2019
 #4
avatar+101761 
+3

 ∫5 3 (1/(x^2-6x+13))dx

 

\(\displaystyle\int_3^{5}\frac{1}{\sqrt{x^2-6x+13}}dx\\ =\displaystyle\int_3^{5}\frac{1}{\sqrt{x^2-6x+9+4}}dx\\ =\displaystyle\int_3^{5}\frac{1}{\sqrt{2^2+(x-3)^2}}dx\\\)

 

 

I did this one in a very similar fashion.

I used this triangle

 

 

See if you can take it from there   laugh

 Mar 26, 2019
 #5
avatar+101761 
+1

If anyone wants to show guest how to do it in a more traditional way.

That is fine :)

 Mar 26, 2019
 #6
avatar+22315 
+2

1. 

∫1/6 0 (1/(sqrt(1-9x^2))dx

\(\large{\int \limits_{0}^{\frac{1}{6}} \dfrac{1}{ \sqrt{1-9x^2} }dx}\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{ \large{\int \limits_{0}^{\frac{1}{6}} \dfrac{1}{ \sqrt{1-9x^2} }\ dx} } \\\\ &=& \displaystyle \int \limits_{0}^{\dfrac{1}{6}} \dfrac{1}{ \sqrt{1-(3x)^2} }\ dx \\\\ && \quad \boxed{ \text{substitute: } \\ u = 3x,\ du=3\ dx,\\ x=0 \Rightarrow u=3\cdot 0=0,\\ x=\dfrac{1}{6}\Rightarrow u=3\cdot \dfrac{1}{6}=\dfrac{1}{2} } \\\\ &=& \displaystyle \int \limits_{0}^{\dfrac{1}{2}} \dfrac{1}{ \sqrt{1-u^2} } \dfrac{du}{3} \\\\ &=& \dfrac{1}{3}\displaystyle \int \limits_{0}^{\dfrac{1}{2}} \dfrac{1}{ \sqrt{1-u^2} }\ du \\\\ && \quad \boxed{ \text{substitute: } \\ u = \sin(\theta),\ du=\cos(\theta)d\theta,\\ u=0 \Rightarrow \theta=\arcsin(0)=0,\\ u=\dfrac{1}{2}\Rightarrow \theta=\arcsin\left(\dfrac{1}{2}\right)=\dfrac{\pi}{6}} \\\\ &=& \dfrac{1}{3}\displaystyle \int \limits_{0}^{\dfrac{\pi}{6}} \dfrac{\cos(\theta)}{ \sqrt{1-\Big(\sin(\theta)\Big)^2} }\ d\theta \\\\ &=& \dfrac{1}{3}\displaystyle \int \limits_{0}^{\dfrac{\pi}{6}} \dfrac{\cos(\theta)}{ \cos(\theta) }\ d\theta \\\\ &=& \dfrac{1}{3}\displaystyle \int \limits_{0}^{\dfrac{\pi}{6}} d\theta \\\\ &=& \dfrac{1}{3} \Big[ \theta \Big]_{0}^{\frac{\pi}{6}} \\\\ &=& \dfrac{1}{3}\cdot \dfrac{\pi}{6} \\\\ &\mathbf{=}& \mathbf{\dfrac{\pi}{18}} \\ \hline \end{array}\)

 

laugh

 Mar 26, 2019
edited by heureka  Mar 26, 2019
edited by heureka  Mar 26, 2019
edited by heureka  Mar 26, 2019
 #7
avatar+22315 
+1

2. 

∫5 3 (1/(x^2-6x+13))dx

\(\large{\int \limits_{3}^{5} \dfrac{1}{ \sqrt{x^2-6x+13} }\ dx}\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{ \displaystyle \int \limits_{3}^{5} \dfrac{1}{ \sqrt{x^2-6x+13} }\ dx} \\\\ &=& \displaystyle \int \limits_{3}^{5} \dfrac{1}{ \sqrt{(x-3)^2-9+13} }\ dx \\\\ &=& \displaystyle \int \limits_{3}^{5} \dfrac{1}{ \sqrt{(x-3)^2+4} }\ dx \\\\ &=& \displaystyle \int \limits_{3}^{5} \dfrac{1} { \sqrt{ 4 \left( 1+ \dfrac{ (x-3)^2 } {4} \right) } }\ dx \\\\ &=& \displaystyle \int \limits_{3}^{5} \dfrac{1} { 2 \sqrt{ 1+ \left(\dfrac{x-3}{2}\right)^2 } }\ dx \\\\ &=& \dfrac{1}{2} \displaystyle \int \limits_{3}^{5} \dfrac{1} {\sqrt{ 1+ \left(\dfrac{x-3}{2}\right)^2 } }\ dx \\\\ && \quad \boxed{ \text{substitute: } \\ \dfrac{x-3}{2} = \sinh(\theta),\ \dfrac{1}{2}dx=\cosh(\theta)d\theta,\ dx=2\cosh(\theta)d\theta \\ x=3 \Rightarrow \theta=\sinh^{-1}\left(\dfrac{3-3}{2}\right)=0,\\ x=5\Rightarrow \theta=\sinh^{-1}\left(\dfrac{5-3}{2}\right)\\ =\sinh^{-1}(1)=\ln(1+\sqrt{1^2+1})=0.88137358702} \\\\ &=& \dfrac{1}{2} \displaystyle \int \limits_{0}^{0.88137358702} \dfrac{1} {\sqrt{ 1+ \Big(\sinh(\theta)\Big)^2 } }2\cosh(\theta)\ d\theta \\\\ &=& \displaystyle \int \limits_{0}^{0.88137358702} \dfrac{\cosh(\theta)} { \cosh(\theta) }\ d\theta \\\\ &=& \displaystyle \int \limits_{0}^{0.88137358702} d\theta \\\\ &=& \Big[ \theta \Big]_{0}^{0.88137358702} \\\\ &=& 0.88137358702 \\\\ && \mathbf{ \displaystyle \int \limits_{3}^{5} \dfrac{1}{ \sqrt{x^2-6x+13} }\ dx = \sinh^{-1}(1) = 0.88137358702} \\ \hline \end{array}\)

 

 

laugh

 Mar 26, 2019
edited by heureka  Mar 26, 2019

8 Online Users

avatar