How he made this !
$$\int {\frac{1}{\sqrt{4-(x-3)^2}} }\ dx
=\int
\frac{1}{\sqrt{4[ 1- \left( \frac{x-3}{2} \right)^2} ] }\ dx
=\frac{1}{2}\int
\frac{1}{\sqrt{1- \left( \frac{x-3}{2} \right)^2}}\ dx\\\\
\small{\text{We substitute:
$
\frac{x-3}{2}=\sin{(u)},
$
so we have
$
\frac{1}{2}\ dx=\cos{(u)}\ du
$
or
$
\ dx=2\cos{(u)}\ du
$
}}\\
=\frac{1}{2}\int
\frac{2\cos{(u)}}{\sqrt{1- \sin^2{(u)}}}\ du
=\frac{1}{2}\int
\frac{2\cos{(u)}}{\cos{(u)}}}\ du
=\int\ du=u\\
\small{\text{We substitute back:
$
u=\arcsin{ ( \frac{x-3}{2} ) }
$
}}\\\\
\int {\frac{1}{\sqrt{4-(x-3)^2}} }\ dx =\sin^{-1}{ ( \frac{x-3}{2} ) }$$
-5 + 6x - x^2 =
-5 - (x^2 - 6x ) complete the square on x...take one-half the coefficient on x
(= 3), square it (= 9)....then......add and subtract it...so we have...
-5 - (x^2 - 6x + 9 - 9) =
-5 + 9 - (x^2 - 6x + 9) factor the expression on the parenthesis
4 - (x - 3)^2
And that's it...
How he made this !
$$\int {\frac{1}{\sqrt{4-(x-3)^2}} }\ dx
=\int
\frac{1}{\sqrt{4[ 1- \left( \frac{x-3}{2} \right)^2} ] }\ dx
=\frac{1}{2}\int
\frac{1}{\sqrt{1- \left( \frac{x-3}{2} \right)^2}}\ dx\\\\
\small{\text{We substitute:
$
\frac{x-3}{2}=\sin{(u)},
$
so we have
$
\frac{1}{2}\ dx=\cos{(u)}\ du
$
or
$
\ dx=2\cos{(u)}\ du
$
}}\\
=\frac{1}{2}\int
\frac{2\cos{(u)}}{\sqrt{1- \sin^2{(u)}}}\ du
=\frac{1}{2}\int
\frac{2\cos{(u)}}{\cos{(u)}}}\ du
=\int\ du=u\\
\small{\text{We substitute back:
$
u=\arcsin{ ( \frac{x-3}{2} ) }
$
}}\\\\
\int {\frac{1}{\sqrt{4-(x-3)^2}} }\ dx =\sin^{-1}{ ( \frac{x-3}{2} ) }$$
Let's go from this step
-(x^2 -6x + 9 - 9) - 5 =
-(x^2 - 6x + 9) + 9 - 5 =
-(x - 3)^2 + 4 =
4 - (x - 3)^2
But why we cant multiply the negative sign inside the parentheses in this step
-(x^2 - 6x + 9) + 9 - 5
so its become
(-x^2 + 6x - 9) + 9 - 5
You mistake is that
$$(x-3)^2=x^2-6x+9\\\\
$It does not equal $-x^2+6x-9\\\
$that is why -1 had to be left out of the bracket!$$$
Melody
I don't get it
$$-x^2+6x-9$$ = $$(x-3)^2$$
Also
$$x^2-6x+9 = (x-3)^2$$
so what is wrong !!!
NO
$$-x^2+6x-9$$ does not equal $$(x-3)^2$$
$$\\-x^2+6x-9= -(x^2-6x+9)=-1*(x^2-6x+9) = -1*(x-3)^2\\\\
$the -1 is not squared so$ \\\\
(x-3)^2 \ne -x^2+6x-9$$
remember
$$-3^2\ne(-3)^2$$
consider these two sums
$$20+-3^2 = 20-3^2=20-9=11$$
and
$$20+ (-3)^2 = 20++9=29$$
see $$-3^2\ne(-3)^2$$
I hope that helps :)