+0

# Interesting Question, perhaps...

0
146
3

If $$|x-y|=950$$ and $$|y-z|=987$$, what is/are the possible value(s) of $$|x-z|?$$

Guest Oct 24, 2017
Sort:

#1
+6954
+2

| x - y |  =  950

x - y  =  ± 950

x  = ± 950 + y

|y - z|  =  987

y - z  =  ± 987

z  =  ±987 + y

x - z  =  (± 950 + y) - (± 987 + y )  =  ± 950 + y ± 987 - y

x - z  =  ± 950 ± 987

x - z = 950 + 987     or     x - z = 950 - 987     or     x - z = -950 + 987     or     x - z = -950 - 987

So

x - z  =  1937     or     x - z  =  -37     or     x - z  =  37     or     x - z  =  -1937

So the possible values for

|x - z|   are    1937   and     37

hectictar  Oct 24, 2017
#2
+85919
+2

x - y  =   950

y - z =    987    add these

x - z  =  1937      so  l  x - z l =  1937

x - y  =  -950

y - z =    987   add these

x - z  =  37       so   l x - z l  =   37

The only two other possibilites   are x - y  = -1937    and x - y  = -37......but the absolute values of these are already accounted for by the above answers....

CPhill  Oct 24, 2017
edited by CPhill  Oct 24, 2017
#3
+1886
+2

Doing this problem requires one to consider a few cases.

Firstly, I will solve for x in the first given equation.

$$|x-y|=950$$ Drop the absolute value bars and split this equation into a positive and negative answer.
 $$x-y=950$$ $$x-y=-950$$

Add to both sides in both cases to isolate x.
 $$x_1=y+950$$ $$x_2=y-950$$

Now, let's solve for z in the second equation in the exact same fashion.

$$|y-z|=987$$ Drop the absolute value bars again.
 $$y-z=987$$ $$y-z=-987$$

Subtract y from both sides.
 $$-z=-y+987$$ $$-z=-y-987$$

Divide by -1 to fully isolate.
 $$z_1=y-987$$ $$z_2=y+987$$

In order to solve this problem, one must consider all 4 cases. I have created them all in a table for you! Then, simplify as much as possible.

 Case 1: $$|x_1-z_1|$$ Case 2: $$|x_1-z_2|$$ Case 3: $$|x_2-z_1|$$ Case 4: $$|x_2-z_2|$$ $$|y+950-(y-987)|$$ $$|y+950-(y+987)|$$ $$|y-950-(y-987)|$$ $$|y-950-(y+987)|$$ $$|y+950-y+987|$$ $$|y+950-y-987|$$ $$|y-950-y+987|$$ $$|y-950-y-987|$$ $$|950+987|$$ $$|950-987|$$ $$|-950+987|$$ $$|-950-987|$$ $$|1937|$$ $$|-37|$$ $$|37|$$ $$|-1937|$$ $$1937$$ $$37$$ $$37$$ $$1937$$

Therefore, $$|x-z|=37\hspace{1mm}\text{or}\hspace{1mm}|x-z|=1937$$

TheXSquaredFactor  Oct 24, 2017

### 31 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details