+0  
 
0
239
3
avatar

If \(|x-y|=950\) and \(|y-z|=987\), what is/are the possible value(s) of \(|x-z|?\)

Guest Oct 24, 2017
 #1
avatar+7324 
+2

| x - y |  =  950

x - y  =  ± 950

x  = ± 950 + y

 

|y - z|  =  987

y - z  =  ± 987

z  =  ±987 + y

 

x - z  =  (± 950 + y) - (± 987 + y )  =  ± 950 + y ± 987 - y

 

x - z  =  ± 950 ± 987

 

x - z = 950 + 987     or     x - z = 950 - 987     or     x - z = -950 + 987     or     x - z = -950 - 987

 

So

 

x - z  =  1937     or     x - z  =  -37     or     x - z  =  37     or     x - z  =  -1937

 

So the possible values for

 

|x - z|   are    1937   and     37     smiley

hectictar  Oct 24, 2017
 #2
avatar+89953 
+2

x - y  =   950                         

y - z =    987    add these

 

x - z  =  1937      so  l  x - z l =  1937

 

x - y  =  -950

y - z =    987   add these

 

x - z  =  37       so   l x - z l  =   37

 

The only two other possibilites   are x - y  = -1937    and x - y  = -37......but the absolute values of these are already accounted for by the above answers....

 

 

cool cool cool

CPhill  Oct 24, 2017
edited by CPhill  Oct 24, 2017
 #3
avatar+2248 
+2

Doing this problem requires one to consider a few cases. 

 

Firstly, I will solve for x in the first given equation.

 

\(|x-y|=950\) Drop the absolute value bars and split this equation into a positive and negative answer.
\(x-y=950\) \(x-y=-950\)

 

Add to both sides in both cases to isolate x.
\(x_1=y+950\) \(x_2=y-950\)

 

 
   

 

Now, let's solve for z in the second equation in the exact same fashion. 

 

\(|y-z|=987\) Drop the absolute value bars again.
\(y-z=987\) \(y-z=-987\)

 

Subtract y from both sides.
\(-z=-y+987\) \(-z=-y-987\)

 

Divide by -1 to fully isolate.
\(z_1=y-987\) \(z_2=y+987\)

 

 
   

 

In order to solve this problem, one must consider all 4 cases. I have created them all in a table for you! Then, simplify as much as possible.
 

Case 1: \(|x_1-z_1|\) Case 2: \(|x_1-z_2|\) Case 3: \(|x_2-z_1|\) Case 4: \(|x_2-z_2|\)
\(|y+950-(y-987)|\) \(|y+950-(y+987)|\) \(|y-950-(y-987)|\) \(|y-950-(y+987)|\)
\(|y+950-y+987|\) \(|y+950-y-987|\) \(|y-950-y+987|\) \(|y-950-y-987|\)
\(|950+987|\) \(|950-987|\) \(|-950+987|\) \(|-950-987|\)
\(|1937|\) \(|-37|\) \(|37|\) \(|-1937|\)
\(1937\) \(37\) \(37\) \(1937\)
       

 

Therefore, \(|x-z|=37\hspace{1mm}\text{or}\hspace{1mm}|x-z|=1937\)

TheXSquaredFactor  Oct 24, 2017

8 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.