Solve for x
\(x^{log_y{x}}=2\)
\(y^{log_x{y}}=16\)
x and y are greater than 0 of course
\(x^{log_y{x}}=2 \qquad \qquad \qquad y^{log_x{y}}=2^4\\ x^{\frac{log x}{log y}}=2 \qquad \qquad \qquad y^{\frac{log y}{log x}}=2^4\\ log\;{x^{\frac{log x}{log y}}}=log\;{2} \qquad \quad \log{y^{\frac{log y}{log x}}}=\log{2^4}\\ {\frac{log x}{log y}}*log\;x=log\;{2} \qquad \quad {\frac{log y}{log x}}*\log\;y=4\log\;2\\ \frac{({log x})^2}{log y}=log\;{2} \qquad \quad \qquad \frac{(log y)^2}{4log x}=\log\;2\\~\\ so\\ 4{{(log x})^3}=(log y)^3\\ \sqrt[3]{4}=\frac{logy}{logx}\\ log_xy = \sqrt[3]{4}\)
Oh I have to solve for x...
\(\frac{logx}{log y}=\frac{1}{\sqrt[3]{4}}\\ log_y x=4^{(-1/3)}\\ y^{log_y x}=y^{4^{(-1/3)}}\\ x=y^{4^{(-1/3)}}\\ \)
my attempt:
Take logx of both sides
\(log_x{x^{log_y{x}}}=log_x2\)
(1) \(log_yx=log_x2\)
Take logy of both sides
\(log_y{y^{log_xy}}=log_y16\)
\(log_xy=log_y16\)
for (2) we isolate \(log_y2\) on one side
\(log_xy=4*log_y2\)
(2) \(\frac{log_xy}{4}=log_y2\)
For (1) we invert the logs to substitute into 2
\(log_yx=log_x2\) -> \(log_xy=log_2x\)
substituting:
\(\frac{log_2x}{4}=log_y2\)
Then we isolate y which is
\(y=2^{log_x16}\)
Substituing back into (1)
\(log_{2^{log_x16}}x=log_x2\)
\(\frac{log_2x}{log_x16}=log_x2\)
\(\frac{log_2x}{4*log_x2}=log_x2\)
\(log2_x=4*(log_x2)^2\)
We now make \(log_x2=a\)
\(\frac{1}{a}=4a^2\)
\(a=\frac{1}{4^{\frac{1}{3}}}\)
\(log_x2=\frac{1}{4^{\frac{1}{3}}}\)
solving for x we get x = 2^(cbrt(4))