Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
442
1
avatar+140 

Let f(x)=3x+2 and g(x)=ax+b , for some constants a and b. If ab=20 and f(g(x))=g(f(x)) for x=0,1,29, find the sum of all possible values of a.

 

Post answer w/ explanation please.

 

Thank you

 Oct 21, 2021
 #1
avatar+506 
+1

a(3x+2)+b=3(ax+b)+23ax+2a+b=3ax+3b+22a+b=3b+22a2b=2ab=1a1=b

So as long as a1=bf(g(x))=g(f(x)). The only other condition we need to satisfy is ab=20, so:

a(a1)=20a2a20=0(a5)(a+4)=0a=5,a=4

Sum them up and you'll get the answer

 Oct 21, 2021

2 Online Users