+0  
 
0
47
1
avatar

g(x)=(3/(x^2)-16)+(2/x+4) ..

 

a.) g^1(x) (g inverse x =..?)

b.) g^1(5)= ?

 

I'm Indonesian BTW :D

Guest Mar 15, 2018
Sort: 

1+0 Answers

 #1
avatar+85821 
+1

g(x)   = y

 

y  =       3                    2 (x - 4)

        _______    +      _________

        x^2 - 16             (x + 4)(x - 4)

 

y  =    3 + 2x - 8

        __________

          x^2  - 16

 

y  =  2x -  5

       _______

       x^2  - 16

 

y (x^2 - 16)  = 2x - 5

yx^2 - 16y  = 2x - 5

16y  =  yx^2 - 2x + 5

16y  = y (x^2 - (2/y)x + 5/y)

16 =  x^2  - (2/y)x + 5/y      complete the square on x

16  = x^2 - (2/y)x + 5/y + 1/y^2 - 1/y^2 

     

Add  1/y^2  to both sides....subtract 5/y from both sides

 

16 + 1/y^2 -5/y   = x^2 -(2/y)x + 1/y^2      factor the right side

16 + 1/y^2 - 5/y  = (x - 1/y)^2

1/y^2 - 5/y + 16  =  (x - 1/y)^2      get a common denominator on the left

[16y^2 -5y + 1] / y^2  =  (x - 1/y)^2      take both roots

±√[ (16y^2 -5y + 1) / y^2 ]  =  x - 1/y      add 1/y to both sides

1/y ±√  (16y^2 -5y + 1) / y

[ 1 ±√  (16y^2 -5y + 1)  ] / y  = x       "swap" x and y

 

 

[ 1 ±√ [ 16x^2 - 5x + 1) ] / x  =  y  =  g-1(x)

Thus....this is the inverse.....but it is not one-to-one.....we have two values for g-1(5)

g-1 (5)  =   ( 1 + √ [ 16(5)^2 - 5(5) + 1 ] )  / 5   = ( 1 + √ 376 ) /  5  ≈ 4.078

g-1(5) =  ( 1 - √ [ 16(5)^2 - 5(5) + 1 ] )  / 5   = ( 1 - √ 376 ) /  5  ≈ -3.678

 

So   g-1 (5)   =   ≈4.078    and   ≈ -3.678

 

 

 

cool cool cool

CPhill  Mar 15, 2018

33 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details