We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# invers function?

0
209
1

g(x)=(3/(x^2)-16)+(2/x+4) ..

a.) g^1(x) (g inverse x =..?)

b.) g^1(5)= ?  I'm Indonesian BTW :D

Mar 15, 2018

### 1+0 Answers

#1
+1

g(x)   = y

y  =       3                    2 (x - 4)

_______    +      _________

x^2 - 16             (x + 4)(x - 4)

y  =    3 + 2x - 8

__________

x^2  - 16

y  =  2x -  5

_______

x^2  - 16

y (x^2 - 16)  = 2x - 5

yx^2 - 16y  = 2x - 5

16y  =  yx^2 - 2x + 5

16y  = y (x^2 - (2/y)x + 5/y)

16 =  x^2  - (2/y)x + 5/y      complete the square on x

16  = x^2 - (2/y)x + 5/y + 1/y^2 - 1/y^2

Add  1/y^2  to both sides....subtract 5/y from both sides

16 + 1/y^2 -5/y   = x^2 -(2/y)x + 1/y^2      factor the right side

16 + 1/y^2 - 5/y  = (x - 1/y)^2

1/y^2 - 5/y + 16  =  (x - 1/y)^2      get a common denominator on the left

[16y^2 -5y + 1] / y^2  =  (x - 1/y)^2      take both roots

±√[ (16y^2 -5y + 1) / y^2 ]  =  x - 1/y      add 1/y to both sides

1/y ±√  (16y^2 -5y + 1) / y

[ 1 ±√  (16y^2 -5y + 1)  ] / y  = x       "swap" x and y

[ 1 ±√ [ 16x^2 - 5x + 1) ] / x  =  y  =  g-1(x)

Thus....this is the inverse.....but it is not one-to-one.....we have two values for g-1(5)

g-1 (5)  =   ( 1 + √ [ 16(5)^2 - 5(5) + 1 ] )  / 5   = ( 1 + √ 376 ) /  5  ≈ 4.078

g-1(5) =  ( 1 - √ [ 16(5)^2 - 5(5) + 1 ] )  / 5   = ( 1 - √ 376 ) /  5  ≈ -3.678

So   g-1 (5)   =   ≈4.078    and   ≈ -3.678   Mar 15, 2018