If \(f(x)=\dfrac{a}{x+2}\), solve for the value of \(a\) so that f(0)=f^{-1}(3a).
Thanks!!!
f(0) = a/2
To find the inverse, we have that
y = a / [x + 2]
y [ x + 2 ] = a
yx + 2y = a
yx = a - 2y
x = [ a - 2y] / y swap x and y
y = [ a - 2x ] /x = the inverse = f-1(x)
So
f-1 (3a) = [ a - 2(3a) ] / [3a ] = [ -5a ] / 3a = -5/3
So if f(0) = f-1(3a).....then
a/ 2 = -5/3
a = -10/3
Inverse Functions
If
\(\large{\mathbf{f(x)=\dfrac{a}{x+2}}}\),
solve for the value of \(a\) so that
\( \large{\mathbf{f(0)=f^{-1}(3a)}}\).
\(\begin{array}{|rcll|} \hline f\Big(f^{-1}(x) \Big) &=& x \quad | \quad x = 3a \\ f\Big(f^{-1}(3a)\Big) &=& 3a \quad | \quad f^{-1}(3a) = f(0) \\ f\Big(f(0)\Big) &=& 3a \quad | \quad f(0) = \dfrac{a}{0+2} = \dfrac{a}{2} \\ f\Big(\dfrac{a}{2}\Big) &=& 3a \quad | \quad f\Big(\dfrac{a}{2}\Big) = \dfrac{a}{\dfrac{a}{2}+2} = \dfrac{2a}{4+a} \\ \dfrac{2a}{4+a} &=& 3a \quad | \quad : a \\ \dfrac{2}{4+a} &=& 3\\ 3(4+a) &=& 2 \\ 12+3a &= 2 \\ 3a &=& -10 \\ \mathbf{a} &\mathbf{=}& \mathbf{-\dfrac{10}{3}} \\ \hline \end{array} \)