+0  
 
0
196
3
avatar+115 

Just a little quickie, since Google won't help me out. 

g(x) = 9^(x)-3

h(x) = g^(-1)(x)

Is g^(-1)(x) equal to (1/g)(x) or 1/(g(x))? In other words, would g^(-1) be equivalent to 1 over all of 9^(x)-3? 

Aleguan  Jan 24, 2018
 #1
avatar+7179 
+3

In this context  g-1(x)  does not mean  g(x)  raised to the power of negative 1 .

 

It means the inverse function of  g(x) . We can find  g-1(x)  like this....

 

g(x)   =   9^x  -  3

                                        Instead of  g(x) ,  write  y .

y  =  9^x  -  3

                                        Now we want to solve this equation for  x  .

y + 3   =   9^x

 

log(y + 3)   =   log(9^x)

 

log(y + 3)   =   x log 9

 

log(y + 3) / log 9   =   x

                                        To get the inverse function, swap  x  and  y .

log(x + 3) / log 9   =   y    This is the inverse function. We can say...

 

g-1(x)   =   log(x + 3) / log 9

 

So...    g-1(x)  does not mean  1 / g(x) .

 

Neither does  sin-1x  =  (sin x)-1   ,  even though  sin2x  =  (sin x)2

 

This is something that has bothered me before. Maybe there is a reason why it is okay and I just don't understand it......?   smiley

hectictar  Jan 24, 2018
edited by hectictar  Jan 24, 2018
 #2
avatar+115 
+2

Hm, ok thanks. Not sure what log means though...

Aleguan  Jan 24, 2018
 #3
avatar+7179 
+2

"log" is short for "logarithm" .

This can probably explain better than I can: https://youtu.be/Z5myJ8dg_rM

 

Here's a simpler example of finding the inverse function:

 

f(x)  =  x + 1

                         Instead of  f(x) , let's say  y .

y  =  x + 1         Solve for  x .

y - 1  =  x

                        Swap  x  and  y .

x - 1  =  y         This is the inverse.

f-1(x)  =  x - 1

hectictar  Jan 24, 2018

29 Online Users

avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.