We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
1
100
5
avatar+221 

Suppose a is directly proportional to b, but inversely proportional to c. If a=2 when b=5 and c=9, then what is c when b=3?

 Aug 7, 2019
 #1
avatar+5798 
+3

\(a = p b\\ a = \dfrac q c\\ c = \dfrac{q}{pb}\)

 

\(2=5p \Rightarrow p=\dfrac 2 5\\ 2 = \dfrac q 9 \Rightarrow q = 18\\~\\ c = \dfrac{18}{\frac 2 5 \cdot 3} = 15 \)

.
 Aug 7, 2019
 #5
avatar
0

Thanks! :)

Guest Aug 9, 2019
 #2
avatar
0

Suppose a is directly proportional to b, but inversely proportional to c. If a=2 when b=5 and c=9, then what is c when b=3?

 

\(a:b=2:5\\ a:c=9:2\)                    Nonsense. How blamable  crying
 

\(b=\frac{5a}{2}\\ c=\frac{2a}{9}\)

b=3

\(a=\frac{2b}{5 }\\ a=\frac{2\cdot 3}{5}\\ a=\frac{6}{5}\\ c=\frac{2a}{9}=\frac{2\cdot6}{9\cdot 5}\\ \color{blue}c=\frac{4}{15}\ \color{black}Not\ correct.\)      

laugh  !

 Aug 7, 2019
edited by asinus  Aug 7, 2019
edited by asinus  Aug 8, 2019
 #3
avatar+103715 
+1

Asinus, you need to look up what inversely proportional means.

Melody  Aug 7, 2019
 #4
avatar+8521 
+2

Suppose a is directly proportional to b, but inversely proportional to c. If a=2 when b=5 and c=9, then what is c when b=3?

 

\(\color{BrickRed}a:b=2:5\\ \color{BrickRed}a:\frac{1}{c}=2:\frac{1}{9}\\ a=\frac{2b}{5}\\ \frac{2}{c}=\frac{a}{9}\\ c=\frac{18}{a}\)

b=3

\(a=\frac{2b}{5}\\ a=\frac{6}{5}\\ c=\frac{18}{a}\\ c=\frac{18\cdot 5}{6}\\ \color{blue}c=15\)

 

Thanks Melody! I have "looked up".

laugh  !

 Aug 8, 2019

10 Online Users

avatar