We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
143
4
avatar+57 

You are given that \(x\) is directly proportional to \(y^3 \)  , and \(y \)  is inversely proportional to z . If the value of x is 3 when z is 12 , what is the value of x when 75  is equal to z? Express your answer as a common fraction.

 Feb 11, 2019
edited by vindou  Feb 11, 2019

Best Answer 

 #3
avatar+18965 
+2

So   x = k y^3     but y = c/z        we can combine these by substituting in for y

 

x = k (c/z^3)   = kc/z^3      we can combine the constants k and c in to one constant k

 

x = k/z^3       when z = 12  x = 3    solve for k

3 = k /(12^3)      so k = 5184

 

when z= 75        x = 5184/75^3 =   5184/421875 =       192/15625

 Feb 12, 2019
 #1
avatar+18965 
+1

Read your question......you left off the really important relationship between y  and z.

 Feb 11, 2019
 #2
avatar+57 
+1

ah sorry

vindou  Feb 11, 2019
 #3
avatar+18965 
+2
Best Answer

So   x = k y^3     but y = c/z        we can combine these by substituting in for y

 

x = k (c/z^3)   = kc/z^3      we can combine the constants k and c in to one constant k

 

x = k/z^3       when z = 12  x = 3    solve for k

3 = k /(12^3)      so k = 5184

 

when z= 75        x = 5184/75^3 =   5184/421875 =       192/15625

ElectricPavlov  Feb 12, 2019
 #4
avatar+57 
+1

Thank you!

vindou  Feb 13, 2019

11 Online Users