+0

# inverse

0
275
1
+20

Use the graph below to answer the following questions.

Will the inverse of f(x) be a function? How can you tell?

Using the above graph determine the domain and range of f(x) and the domain and range of   f –1(x).

Determine a mapping of the form (x, y) --> (__, __) for the inverse of a relation. Explain how you determined this mapping.

Feb 18, 2022

#1
+118608
+1

The inverse of funtion x cannot be a function because for one segment of f(x)=-2  The inverse of that is  just -2

I mean   for the function     For -3<=x<=-1     f(x)=-2

the inverse would be when x=-2   \(f^{-1}(2)\)   can be any number between -3 and -1

Hence there is no unique value of \(f^{-1}(2) \)  Hence \(f^{-1}(x)\)    is not a function.

f(x)         domain [-3,5]    range  [-2,3]

\(f^{-1}(x)\)     domain [-2,3]         range  [-3,5]

I assume for the last bit

(x,y)  --> (y,x)     becasue the inverse of a function is its reflection about the line y=x

Here is a mapping

Feb 19, 2022