Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1103
3
avatar+262 

 Jun 20, 2015

Best Answer 

 #2
avatar+118703 
+15

Sabi has told me that the answer is different from the book answer.    

 

95a211ab+2b2+1710a2+13ab3b2=95a210ab1ab+2b2+1710a22ab+15ab3b2=95a(a2b)b(a2b+172a(5ab)+3b(5ab)=9(5ab)(a2b)+17(2a+3b)(5ab)=9(2a+3b)(5ab)(a2b)(2a+3b)+17(a2b)(2a+3b)(5ab)(a2b)=18a+27b(5ab)(a2b)(2a+3b)+17a34b(2a+3b)(5ab)(a2b)=18a+27b+17a34b(5ab)(a2b)(2a+3b)=35a7b(5ab)(a2b)(2a+3b)=7(5ab)(5ab)(a2b)(2a+3b)=7(a2b)(2a+3b)

 

Is it the same now Sabi ?

 Jun 21, 2015
 #1
avatar+118703 
+10

Yes, I think it looks good so far, now you just have to get them both with a common denominator.

That will be  (5a-b)(a-2b)(2a+3b)

then you can add the numerators  

 Jun 20, 2015
 #2
avatar+118703 
+15
Best Answer

Sabi has told me that the answer is different from the book answer.    

 

95a211ab+2b2+1710a2+13ab3b2=95a210ab1ab+2b2+1710a22ab+15ab3b2=95a(a2b)b(a2b+172a(5ab)+3b(5ab)=9(5ab)(a2b)+17(2a+3b)(5ab)=9(2a+3b)(5ab)(a2b)(2a+3b)+17(a2b)(2a+3b)(5ab)(a2b)=18a+27b(5ab)(a2b)(2a+3b)+17a34b(2a+3b)(5ab)(a2b)=18a+27b+17a34b(5ab)(a2b)(2a+3b)=35a7b(5ab)(a2b)(2a+3b)=7(5ab)(5ab)(a2b)(2a+3b)=7(a2b)(2a+3b)

 

Is it the same now Sabi ?

Melody Jun 21, 2015
 #3
avatar+262 
+5

yes thank you very much  my answer was wrong because i didnt open the brachets 

 Jun 21, 2015

4 Online Users