+0

# IS THERE ANY OTHER WAY EXCEPT USING THE Quadratic formula

0
372
2
+262

sabi92  Jul 12, 2015

#1
+26619
+10

You can factor it as:

$$(x-\frac{1}{2})(x-4m+\frac{1}{2})=0$$

so

$$\\ x=\frac{1}{2}\\ or\\x=4m-\frac{1}{2}$$

.

Alan  Jul 12, 2015
Sort:

#1
+26619
+10

You can factor it as:

$$(x-\frac{1}{2})(x-4m+\frac{1}{2})=0$$

so

$$\\ x=\frac{1}{2}\\ or\\x=4m-\frac{1}{2}$$

.

Alan  Jul 12, 2015
#2
+92164
+5

Thanks Alan,

OR

You could solve it by completing the square method

$$\\x^2-4xm+(2m-\frac{1}{4})=0\\\\ x^2-4xm\;=\;-(2m-\frac{1}{4})\\\\ x^2-4xm+(2m)^2\;=\;-2m+\frac{1}{4}+(2m)^2\\\\ (x-2m)^2\;=\;-2m+\frac{1}{4}+4m^2\\\\ (x-2m)^2\;=\;4m^2-2m+\frac{1}{4}\\\\ (x-2m)^2\;=\;4(m^2-\frac{m}{2}+\frac{1}{16})\\\\ (x-2m)^2\;=\;4(m-\frac{1}{4})^2\\\\ x-2m\;=\;\pm 2(m-\frac{1}{4})\\\\ x\;=\;2m\pm 2(m-\frac{1}{4})\\\\ x\;=\;2m+ 2m-\frac{1}{2}\qquad or \qquad x\;=\;2m- 2m+\frac{1}{2}\\\\ x\;=\;4m-\frac{1}{2}\qquad or \qquad x\;=\;\frac{1}{2}\\\\$$

Melody  Jul 13, 2015

### 36 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details