+0  
 
0
806
2
avatar

Is x^2-2y^2-3=0 a function

 Mar 15, 2016

Best Answer 

 #2
avatar+26393 
+25

x^2-2y^2-3=0

 

\(\begin{array}{rcll} x^2-2y^2-3 &=& 0 \qquad | \qquad + 3 \\ x^2-2y^2 &=& 3 \qquad | \qquad : 3 \\ \frac{x^2}{3}-\frac{2y^2}{3} &=& 1 \\ \frac{x^2}{3}-\frac{ y^2}{\frac32} &=& 1 \\ \end{array}\)

 

parameter notation hyperbola \(\boxed{~ \begin{array}{rcll} \frac{x^2}{3}-\frac{ y^2}{1.5} &=& 1 \\ \end{array} ~}\)

 

laugh

 Mar 15, 2016
 #1
avatar+29 
0

Yes

 Mar 15, 2016
 #2
avatar+26393 
+25
Best Answer

x^2-2y^2-3=0

 

\(\begin{array}{rcll} x^2-2y^2-3 &=& 0 \qquad | \qquad + 3 \\ x^2-2y^2 &=& 3 \qquad | \qquad : 3 \\ \frac{x^2}{3}-\frac{2y^2}{3} &=& 1 \\ \frac{x^2}{3}-\frac{ y^2}{\frac32} &=& 1 \\ \end{array}\)

 

parameter notation hyperbola \(\boxed{~ \begin{array}{rcll} \frac{x^2}{3}-\frac{ y^2}{1.5} &=& 1 \\ \end{array} ~}\)

 

laugh

heureka Mar 15, 2016

3 Online Users

avatar