Define the system of equations;
$$x_{n+1} = x_n - y_n$$
$$y_{n+1} = 2x_n + 4y_n$$
so if we take $$A = \begin{pmatrix}
1 & -1\\
2 & 4
\end{pmatrix}$$
and define
$$\begin{pmatrix}
x_{n+1} \\
y_{n+1} \\
\end{pmatrix} = \begin{pmatrix}
1 & -1 \\
2 & 4 \\
\end{pmatrix}\begin{pmatrix}
x_n \\
y_n \\
\end{pmatrix}$$
Then given that the eigenvalues and a corresponding eigenvector to the eigenvalue can be defined as
$$\lambda_1 = 3$$
$$\mu_1 = \begin{pmatrix}
1 \\
-2 \\
\end{pmatrix}$$
$$\lambda_2 = 2$$
$$\mu_2 = \begin{pmatrix}
1 \\
-1
\end{pmatrix}$$
(I already checked this)
Is it then true that the general solution can be defined as
$$x_n = 3^nc_1 + 2^nc_2$$
$$y_n = -2*3^nc_1 - 2^nc_2$$
Reinout
Perhaps I've misunderstood, but if c1 and c2 are initial values (n=0) for x and y then (for n = 1):
These don't look the same to me!