Jeff was on his way to visit his mother in Königshausen.
In doing so, he had to cross the river "Benk" by boat, so he did.
It took 1h and 40 min to cross it with an average speed of 48 km/h. During the trip he said that the river is only 90 km long.
a) Is his statement true, give reasons.
After he crossed the river and was finally with his mother, she baked him a cake, saying that it would only take \(\frac{3}{4} \cdot 32\) min.
After it was ready, she cut it into 3 equal parts.
b) Show if this is possible (you may be able to show a picture here).
c) "I s*ck at math!", Jeff says.
Explain to Jeff how to proceed here with the corresponding solution.
Hello Guest,
Jeff was on his way to visit his mother in Königshausen.
In doing so, he had to cross the river "Benk" by boat, so he did.
It took 1h and 40 min to cross it with an average speed of 48 km/h. During the trip he said that the river is only 90 km long.
a) Is his statement true, give reasons.
After he crossed the river and was finally with his mother, she baked him a cake, saying that it would only take \(\frac{3}{4} \cdot 32\) min.
After it was ready, she cut it into 3 equal parts.
b) Show if this is possible (you may be able to show a picture here).
c) "I s*ck at math!", Jeff says.
Explain to Jeff how to proceed here with the corresponding solution.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
a) His statement is not true, because if we take the remaining 40 min, that corresponds to \(\frac{2}{3}h\) .
So it took \(48 \mbox { } km + (\frac{2}{3} \cdot 48 \mbox { } km)\) and that is equal to 80 km.
b) I can show you a picture here:
I do not think, I must write something here. (The picture is from Google.)
c) I think that the duration of the baked cake is meant here.
\(\frac{3}{4} \cdot 32 = \frac{3 \cdot 32}{4} = \frac{96}{4} \mbox { } min = 24 \mbox { } min\) , so it takes 24 min until the cake is ready.
I hope that was helpful.
Straight