Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1601
3
avatar

John computes the sum of the elements of each of the 15 two-element subsets of {1,2,3,4,5,6}. What is the sum of these 15 sums?

 Sep 13, 2017
 #1
avatar+130474 
+2

It might be interesting to see if we can discover a pattern here.

 

Note

 

Three elements....two at  time  (1,2) (1,3) (2,3)....sum  =   12

Four elements .... two at a time  (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)  .....sum  =  30

Five elements....two at a time  (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)  ....sum  = 60

 

Note that for N elements taken  2 at a time......the pattern of sums seems to be

 

(N - 1) ( N ) ( N+ 1)  / 2  

 

So....for 6 elements taken 2 at a time.....the sum should be

 

(5) (6) (7)  / 2  =     210 / 2  =   105

 

Verify for yourself that this is true.......!!!!!!

 

cool cool cool

 Sep 13, 2017
edited by CPhill  Sep 13, 2017
edited by CPhill  Sep 13, 2017
 #2
avatar+130474 
+1

 

As an alternative answer  to this.....

 

Note that each  element  will be summed  5  times

 

So we have  the sum  (1 + 2 + 3 + 4 + 5 + 6)   summed 5 times

 

And the sum of  the frist  6 elements  =  (6) (7)  / 2  =  21 

 

So......the total sum will be  

 

(5) * [ (6) * ( 7)  / 2 ]   =    (N -1) (N) ( N + 1)  / 2     which is the correct "formula"

 

 

cool cool cool

 Sep 13, 2017
 #3
avatar+26396 
+1

John computes the sum of the elements of each of the 15 two-element subsets of
{1,2,3,4,5,6}.
What is the sum of these 15 sums?

 

15 two-element subsets:

1,2,3,4,5,61,22,33,44,55,61,32,43,54,61,42,53,61,52,61,6

 

the numbers are: 5×1+5×2+5×3+5×4+5×5+5×6=5×(1+2+3+4+5+6)=5×(1+62)×6=5×(72)×6=105=(n1)×(1+n2)×n=3×(n+13)

 

laugh

 Sep 14, 2017

4 Online Users

avatar
avatar
avatar
avatar