We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# John computes the sum of the elements of each of the 15 two-element subsets of $\{1,2,3,4,5,6\}$. What is the sum of these 15 sums?

0
526
3

John computes the sum of the elements of each of the 15 two-element subsets of $\{1,2,3,4,5,6\}$. What is the sum of these 15 sums?

Sep 13, 2017

### 3+0 Answers

#1
+2

It might be interesting to see if we can discover a pattern here.

Note

Three elements....two at  time  (1,2) (1,3) (2,3)....sum  =   12

Four elements .... two at a time  (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)  .....sum  =  30

Five elements....two at a time  (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)  ....sum  = 60

Note that for N elements taken  2 at a time......the pattern of sums seems to be

(N - 1) ( N ) ( N+ 1)  / 2

So....for 6 elements taken 2 at a time.....the sum should be

(5) (6) (7)  / 2  =     210 / 2  =   105

Verify for yourself that this is true.......!!!!!!   Sep 13, 2017
edited by CPhill  Sep 13, 2017
edited by CPhill  Sep 13, 2017
#2
+1

As an alternative answer  to this.....

Note that each  element  will be summed  5  times

So we have  the sum  (1 + 2 + 3 + 4 + 5 + 6)   summed 5 times

And the sum of  the frist  6 elements  =  (6) (7)  / 2  =  21

So......the total sum will be

(5) * [ (6) * ( 7)  / 2 ]   =    (N -1) (N) ( N + 1)  / 2     which is the correct "formula"   Sep 13, 2017
#3
+1

John computes the sum of the elements of each of the 15 two-element subsets of
$$\{1,2,3,4,5,6\}$$.
What is the sum of these 15 sums?

15 two-element subsets:

$$\begin{array}{|llllll|} \hline &1,& 2,& 3,& 4,& 5,& 6 \\ \hline &1,2 & 2,3 & 3,4 & 4,5 & 5,6 \\ &1,3 & 2,4 & 3,5 & 4,6 & \\ &1,4 & 2,5 & 3,6 & \\ &1,5 & 2,6 & \\ &1,6 \\ \hline \end{array}$$

$$\begin{array}{|lcll|} \hline \text{the numbers are: } && 5\times 1 \\ &+& 5\times 2 \\ &+& 5\times 3 \\ &+& 5\times 4 \\ &+& 5\times 5 \\ &+& 5\times 6 \\ \hline &=& 5\times (1+2+3+4+5+6) \\ &=& 5\times \left(\frac{1+6}{2}\right)\times 6 \\ &=& 5\times \left(\frac{7}{2}\right)\times 6 \\ &=& 105 \\\\ &=& (n-1)\times \left(\frac{1+n}{2}\right)\times n \\ &=& 3\times \binom{n+1}{3} \\ \hline \end{array}$$ Sep 14, 2017