We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+15
839
2
avatar+99554 

Prove that if  a tangent line is drawn to the parabola y = x^2 at the point x = a.......then the line will have a y-intercept of ( 0, -a^2 )

 

 

cool cool cool

 Dec 3, 2016

Best Answer 

 #2
avatar+18033 
+11

Parabola   y = x^2 

  when x= a    y = a^2

 

Slope = 2x    (derivative of x^2)

y=mx+b   yields    a^2 = 2a(a) + b      

                              a^2 = 2a^2 + b

                              0 = a^2 + b

                               b= -a^2

  so   y = mx + b becomes        y = 2x(x) - a^2            When x = 0   y = - a^2  

 

 

Yah?   

 Dec 4, 2016
 #1
avatar+100168 
+5

Pick me .....   Pick. me ...      LOL

 Dec 4, 2016
 #2
avatar+18033 
+11
Best Answer

Parabola   y = x^2 

  when x= a    y = a^2

 

Slope = 2x    (derivative of x^2)

y=mx+b   yields    a^2 = 2a(a) + b      

                              a^2 = 2a^2 + b

                              0 = a^2 + b

                               b= -a^2

  so   y = mx + b becomes        y = 2x(x) - a^2            When x = 0   y = - a^2  

 

 

Yah?   

ElectricPavlov Dec 4, 2016

35 Online Users

avatar
avatar
avatar