+0  
 
+7
302
2
avatar+76107 

Prove that if  a tangent line is drawn to the parabola y = x^2 at the point x = a.......then the line will have a y-intercept of ( 0, -a^2 )

 

 

cool cool cool

CPhill  Dec 3, 2016

Best Answer 

 #2
avatar+10613 
+11

Parabola   y = x^2 

  when x= a    y = a^2

 

Slope = 2x    (derivative of x^2)

y=mx+b   yields    a^2 = 2a(a) + b      

                              a^2 = 2a^2 + b

                              0 = a^2 + b

                               b= -a^2

  so   y = mx + b becomes        y = 2x(x) - a^2            When x = 0   y = - a^2  

 

 

Yah?   

ElectricPavlov  Dec 4, 2016
Sort: 

2+0 Answers

 #1
avatar+90158 
+5

Pick me .....   Pick. me ...      LOL

Melody  Dec 4, 2016
 #2
avatar+10613 
+11
Best Answer

Parabola   y = x^2 

  when x= a    y = a^2

 

Slope = 2x    (derivative of x^2)

y=mx+b   yields    a^2 = 2a(a) + b      

                              a^2 = 2a^2 + b

                              0 = a^2 + b

                               b= -a^2

  so   y = mx + b becomes        y = 2x(x) - a^2            When x = 0   y = - a^2  

 

 

Yah?   

ElectricPavlov  Dec 4, 2016

15 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details