+0  
 
+10
1544
2
avatar+129852 

Prove that if  a tangent line is drawn to the parabola y = x^2 at the point x = a.......then the line will have a y-intercept of ( 0, -a^2 )

 

 

cool cool cool

 Dec 3, 2016

Best Answer 

 #2
avatar+37146 
+11

Parabola   y = x^2 

  when x= a    y = a^2

 

Slope = 2x    (derivative of x^2)

y=mx+b   yields    a^2 = 2a(a) + b      

                              a^2 = 2a^2 + b

                              0 = a^2 + b

                               b= -a^2

  so   y = mx + b becomes        y = 2x(x) - a^2            When x = 0   y = - a^2  

 

 

Yah?   

 Dec 4, 2016
 #1
avatar+118678 
+5

Pick me .....   Pick. me ...      LOL

 Dec 4, 2016
 #2
avatar+37146 
+11
Best Answer

Parabola   y = x^2 

  when x= a    y = a^2

 

Slope = 2x    (derivative of x^2)

y=mx+b   yields    a^2 = 2a(a) + b      

                              a^2 = 2a^2 + b

                              0 = a^2 + b

                               b= -a^2

  so   y = mx + b becomes        y = 2x(x) - a^2            When x = 0   y = - a^2  

 

 

Yah?   

ElectricPavlov Dec 4, 2016

0 Online Users