+0  
 
+12
652
2
avatar+87301 

Prove that if  a tangent line is drawn to the parabola y = x^2 at the point x = a.......then the line will have a y-intercept of ( 0, -a^2 )

 

 

cool cool cool

CPhill  Dec 3, 2016

Best Answer 

 #2
avatar+12560 
+11

Parabola   y = x^2 

  when x= a    y = a^2

 

Slope = 2x    (derivative of x^2)

y=mx+b   yields    a^2 = 2a(a) + b      

                              a^2 = 2a^2 + b

                              0 = a^2 + b

                               b= -a^2

  so   y = mx + b becomes        y = 2x(x) - a^2            When x = 0   y = - a^2  

 

 

Yah?   

ElectricPavlov  Dec 4, 2016
 #1
avatar+92777 
+5

Pick me .....   Pick. me ...      LOL

Melody  Dec 4, 2016
 #2
avatar+12560 
+11
Best Answer

Parabola   y = x^2 

  when x= a    y = a^2

 

Slope = 2x    (derivative of x^2)

y=mx+b   yields    a^2 = 2a(a) + b      

                              a^2 = 2a^2 + b

                              0 = a^2 + b

                               b= -a^2

  so   y = mx + b becomes        y = 2x(x) - a^2            When x = 0   y = - a^2  

 

 

Yah?   

ElectricPavlov  Dec 4, 2016

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.